People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Longana, Marco Luigi
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024High Performance Ductile and Pseudo-ductile Polymer Matrix Compositescitations
- 2024Characterisation of Highly-Aligned, Discontinuous, Fibre Composites for Compressive Performance
- 2023Recycling end-of-life sails by carbon fibre reclamation and composite remanufacture using the HiPerDiF fibre alignment technologycitations
- 2023Recycling of carbon fibre reinforced polymer composites with superheated steam – A reviewcitations
- 2023Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filamentcitations
- 2023Experimental and hydrodynamic methods to determine aqueous dispersion of discontinuous reclaimed carbon fibres
- 2022HIGHLY ALIGNED DISCONTINUOUS FIBRE COMPOSITE FILAMENTS FOR FUSED DEPOSITION MODELLING: OPEN-HOLE CASE STUDY
- 2022Developing aligned discontinuous flax fibre compositescitations
- 2021A life cycle engineering perspective on biocomposites as a solution for a sustainable recoverycitations
- 2020Remanufacturing of woven carbon fibre fabric production waste into high performance aligned discontinuous fibre compositescitations
- 2020Characterisation of natural fibres for sustainable discontinuous fibre composite materialscitations
- 2019Post-impact behaviour of pseudo-ductile thin-ply angle-ply hybrid compositescitations
- 2018Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid compositescitations
- 2018Reclaimed Carbon and Flax Fibre Compositescitations
- 2018Development and application of a quality control and property assurance methodology for reclaimed carbon fibres based on the HiPerDiF method and interlaminated hybrid specimenscitations
- 2018Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene compositescitations
- 2017Aligned discontinuous intermingled reclaimed/virgin carbon fibre composites for high performance and pseudo-ductile behaviour in interlaminated carbon-glass hybridscitations
- 20173D PRINTED COMPOSITES – BENCHMARKING THE STATE-OF-THE-ART
- 2015Aligned short fibre composites with nonlinear behaviour
- 2015Aligned short fibre hybrid composites with virgin and recycled carbon fibres
- 2015Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibrescitations
- 2012Identification of constitutive properties of composite materials under high strain rate loading using optical strain measurement techniques
- 2011Approaches to synchronise conventional measurements with optical techniques at high strain ratescitations
- 2010Application of optical measurement techniques to high strain rate deformations in composite materials
Places of action
Organizations | Location | People |
---|
article
Developing aligned discontinuous flax fibre composites
Abstract
Sustainability of fibre reinforced polymer composites has become vital for reaching the global sustainable development goals. Natural fibres, particularly flax, and bioderived matrices are possible sustainable solutions for the composites industry, due to the constituents’ embedded environmental impact reduction. According to the circular economy paradigm, sustainability can also be achieved by delaying the disposal of materials. This work reports the interfacial properties of flax fibres with three potentially sustainable advanced matrices, i.e., a vitrimer that combines the beneficial properties of both thermosets and thermoplastics, an entirely bio-based thermoset, and an advanced thermoplastic resin. Each of the selected matrices offers the potential for either recyclability, repairability, reusability, or the use of renewable sources and a reduction in the emissions of volatile organic compounds. Microbond tests were used to evaluate the interfacial shear strength and critical fibre length. It was found that the vitrimer and the bio-based thermoset matrices had a higher level of adhesion with flax fibres (20 and 24 MPa, respectively) compared to a traditional epoxy matrix (12 MPa); the advanced thermoplastic resin (6 MPa) shows the poorest adhesion. The vitrimer matrix was selected as a candidate for a sustainable and repairable discontinuous flax fibre reinforced composite. Mechanical and low-temperature rapid repair performance of an aligned discontinuous flax fibre composite, produced using the HiPerDiF method, were investigated. End-to-end and single patch repair methods were performed: vitrimer matrix composites show the potential for a mechanical strength recovery (%50-70) that would allow them to be reused over several life cycles, enabling a circular economy.