People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuhtz, Moritz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Soft Body Impact loaded composite structures optimized for energy absorption
- 2024Influence of process parameters on quality of aluminum High Pressure Die Casting (HPDC) parts manufactured with a novel vertical chambered machine
- 2024Integration of a renewable energy source within a process network for hybrid metal-thermoplastic composite structures
- 2023Modelling delamination in fibre-reinforced composites subjected to through-thickness compression by an adapted cohesive law
- 2022Digitale, kollaborative Kleingruppenarbeit im Aktiven Plenum – ein Widerspruch?
- 2022Experimental and numerical study on the effect of interlaminar properties on the structural properties of steel/polymer/steel crashboxes
- 2022The path to CO2-neutral production – setting up an energy-coordinated process network for multi-material composite components
- 2022Interface modification in the production of multi-material structures in a continuous metal die-casting-plastic injection-molding hybrid process
- 2022Numerical investigation of the springback behaviour and residual stresses of a hybrid profile produced by the roll forming process
- 2022Virtuell^2 – Simulationspraktikum im digitalen Raum
- 2021A mixed numerical-experimental method to characterize metal-polymer interfaces for crash applicationscitations
- 2021Design approach for the development of a digital twin of a generic hybrid lightweight structurecitations
- 2021Top-hat crashboxes of thermoplastic fibre-metal-laminates processed in one-step thermoforming: Experimental and numerical studycitations
- 2021Investigation of the deformation behaviour and resulting ply thicknesses of multilayered fibre–metal laminatescitations
- 2021Influence of adhesion properties on the crash behavior of steel/polymer/steel sandwich crashboxes: an experimental studycitations
- 2021Effect of saw-tooth ply drops on the mechanical performance of tapered composite laminatescitations
- 2021Das Praktische im Virtuellen – digitale Lehre am ILK
- 2019Interfacegestaltung von Metall-FKV-Hybridstrukturen
- 2019An experimental study on the bending response of multi-layered fibre-metal-laminatescitations
- 2018Elementary specific modelling of composite rotors with consideration of sequential damage processes
- 2018Entwicklung werkstoffgerechter Prüfstandards zur Ermittlung bruchmechanischer Kenngrößen des interlaminaren Versagens von textilverstärkten Kunststoffen (BRUKVIK)
- 2018Experimental investigation of the effect of defects in Automated Fibre Placement produced composite laminatescitations
- 2017Graded interlaminar properties in textile reinforced composite and the determination of strain energy release rates
- 2016Leichtbau-Hydraulik im Automobil (LHYDIA)
- 2016Komplexe Leichtbau-Zwischengehäuse in Faserverbundbauweise für Turbo-Fantriebwerke neuer Generation
Places of action
Organizations | Location | People |
---|
article
Top-hat crashboxes of thermoplastic fibre-metal-laminates processed in one-step thermoforming: Experimental and numerical study
Abstract
<p>Recently, the applicability of thermoplastic fibre-metal-laminates (FMLs) in the automotive and aerospace fields has gained more attention due to their lightweight potential and improved flexural stiffness. Therefore, this study deals with investigating the structural properties of FMLs top-hat crashboxes under quasi-static and highly-dynamic bending conditions. Accordingly, the energy absorption characteristics and failure modes including the arisen microscopic defects are identified. For improved structural integrity, the hat structures were produced using a one-step thermoforming process, in which the forming and bonding of the FMLs layers take place simultaneously. Different metallic skin sheets (aluminium and steel) combined with glass fibre reinforced polyamide cores with different fibre orientations and thicknesses were considered. Also, finite element analysis using LS-Dyna™ was carried out on the Al-based FMLs to calculate the energy absorption behaviour and analyse the failure modes. To characterize the monomaterials and FMLs, tensile tests at different temperatures and strain rates were performed. The results state that with the thermoforming process, arbitrary FMLs material combinations and thicknesses can be processed. Varied thicknesses in the different hat structure regions are expected due to the flow of the polyamide matrix. Moreover, increasing the core thickness and utilizing the 0°/90° fibre orientation can improve the bending stiffness. Several defects such as delamination, plastic deformation and fibre cracking arose during the bending test. Finally, the simulation results revealed good agreement with the experimental ones. Due to the model simplifications, some failure modes could not be replicated in the simulation. This requires further studies.</p>