People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rezazadeh, Mohammadali
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Stress–strain model for FRP-confined circular concrete columns developing structural softening behaviorcitations
- 2023A novel analytical framework for assessing the impact response of SFRC beamcitations
- 2023Analytical model to predict axial stress-strain behavior of heat-damaged unreinforced concrete columns wrapped by FRP jacketcitations
- 2022Modelling the high strain rate tensile behavior of steel fiber reinforced concrete using artificial neural network approachcitations
- 2021Modelling the High Strain Rate Tensile Behavior of Steel Fiber Reinforced Concrete Using Artificial Neural Network Approachcitations
- 2021An analytical approach for evaluating the impact response of steel fiber reinforced concrete beam
- 2021Modeling the compressive behavior of steel fiber reinforced concrete under high strain rate loadscitations
- 2021Modeling the Compressive Behavior of Steel Fiber Reinforced Concrete Under High Strain Rate Loadscitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Analytical Model to Predict Dilation Behavior of FRP Confined Circular Concrete Columns Subjected to Axial Compressive Loadingcitations
- 2019Mechanical behavior of concrete prisms reinforced with steel and GFRP bar systemscitations
- 2017A model for the simultaneous prediction of the flexural and shear deflections of statically determinate and indeterminate reinforced concrete structurescitations
- 2017Shear strengthening of damaged reinforced concrete beams with hybrid composite platescitations
- 2017Flexural and shear response predictions of statically determinate and indeterminate RC structures strengthened with fibre reinforced polymer
- 2017A model for the simultaneous prediction of the flexural and shear deflections of statically determinate and indeterminate RC structurescitations
- 2015Shear strengthening of damaged reinforced concrete beams with hybrid composite platescitations
- 2015Design formula for the flexural strengthening of RC beams using prestressed CFRP reinforcement
- 2015Analytical approach for the flexural analysis of RC beams strengthened with prestressed CFRPcitations
- 2015Transfer zone of prestressed CFRP reinforcement applied according to NSM technique for strengthening of RC structurescitations
- 2014Evaluation of the performance of full-scale RC beams prestressed with NSM-CFRP laminates
- 2014A new hybrid methodology according to near surface mounted carbon fiber reinforced polymer technique for the flexural strengthening of reinforced concrete beamscitations
Places of action
Organizations | Location | People |
---|
article
Transfer zone of prestressed CFRP reinforcement applied according to NSM technique for strengthening of RC structures
Abstract
This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period. ; The study reported in this paper is part of the project “PreLami - Performance of reinforced concrete structures strengthened in flexural with an innovative system using prestressed NSM CFRP laminates”, with the reference PTDC/ECM/114945/2009. The authors would also like to acknowledge the support provided by CLEVER Reinforcement Iberica Company, for supplying the adhesives and the laminates, and Casais and CiviTest for the preparation of the beams.