People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vryonis, Orestis
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Impact of particle thermal treatment on dielectric properties of core-shell filled epoxy nano-composites
- 2024Development, dielectric response, and functionality of ZnTiO 3 /BaTiO 3 /epoxy resin hybrid nanocompositescitations
- 2023Thermo-oxidative aging effect on charge transport in polypropylene/ultra-high molecular weight polyethylene nanocompositescitations
- 2022Flexible polymer-based nanodielectrics reinforced with electrospun composite nanofibers for capacitive energy storagecitations
- 2022Numerical simulation of lightning strike damage to wind turbine blades and validation against conducted current test datacitations
- 2022Dynamic mechanical response in epoxy nanocomposites incorporating various nano-silica architectures
- 2022Dielectric response in epoxy nanocomposites incorporating various nano-silica architecturescitations
- 2022Molecular dynamics of epoxy nanocomposites filled with core–shell and hollow nanosilica architecturescitations
- 2021Stoichiometry and molecular dynamics of anhydride-cured epoxy resin incorporating octa-glycidyl POSS Co-Monomercitations
- 2021Lightning Protection of Wind Turbine Blades – How Supersizing Has Created New Challenges for Nanodielectrics Researchcitations
- 2020Effect of surfactant molecular structure on the electrical and thermal performance of epoxy/functionalized‐graphene nanocompositescitations
- 2019Structure/property relations of graphene oxide/epoxy nanocomposites: tailoring the particle surface chemistry for enhanced electrical and thermal performance
- 2019Understanding the cross-linking reactions in highly oxidized graphene/epoxy nanocomposite systemscitations
- 2019Structural and chemical comparison between moderately oxygenated and edge oxygenated graphene: mechanical, electrical and thermal performance of the epoxy nanocompositescitations
- 2018On the effect of solvent method processing on epoxy resin systemscitations
- 2018On the effect of solvent method processing on epoxy resin systems: a molecular dynamics studycitations
- 2017The Influence of Graphene Oxide on the electrical conduction in unidirectional CFRP laminates for wind turbine blade applications
- 2017Reducing the electrical anisotropy in unidirectional CFRP materials for wind turbine blade applications
- 2017Reducing the electrical anisotropy in unidirectional CFRP materials for wind turbine blade applications
Places of action
Organizations | Location | People |
---|
article
Numerical simulation of lightning strike damage to wind turbine blades and validation against conducted current test data
Abstract
This paper presents a novel numerical approach to simulate lightning strike damage to equipotential bonding interfaces of wind turbine blades, and model validation based on high-current testing. Modern rotor blades are equipped with metal receptors to intercept the lightning leader and metal down conductors to conduct the lightning current, preventing the direct attachment to the CFRP spars. In such conditions, damage in the form of resin thermal degradation and sparks develop inside the blade at the equipotential bonding interfaces. Excellent correlation was found between the numerical predictions and test results in terms of current and temperature distributions. High temperatures were predicted at the sparking areas observed in the tests, which suggested that the damage is thermally activated. Thermogravimetric analysis data indicated that the epoxy pyrolysis process evolves in stages, and that sparking events are often initiated by release of gases and formation of small voids at temperatures lower than expected.