Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Markl, Daniel

  • Google
  • 12
  • 60
  • 261

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2022Polymer pellet fabrication for accurate THz-TDS measurements17citations
  • 2022Analysis of THz scattering of compacted granular materials using THz-TDS4citations
  • 2021Terahertz pulsed imaging as a new method for investigating the liquid transport kinetics of α-alumina powder compacts14citations
  • 2021Development of 3D printed rapid tooling for micro-injection moulding19citations
  • 2020Development and Validation of an in-line API Quantification Method Using AQbD Principles Based on UV-Vis Spectroscopy to Monitor and Optimise Continuous Hot Melt Extrusion Process33citations
  • 2019Hot-melt extrusion process impact on polymer choice of glyburide solid dispersions32citations
  • 2018Pharmaceutical-grade oral films as substrates for printed medicine17citations
  • 2017On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient20citations
  • 2017Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index8citations
  • 2016Multi-methodological investigation of the variability of the microstructure of HPMC hard capsules15citations
  • 2013Hot melt extrusion as a continuous pharmaceutical manufacturing process23citations
  • 2013Supervisory control system for monitoring a pharmaceutical hot melt extrusion process59citations

Places of action

Chart of shared publication
Murphy, Keir N.
2 / 2 shared
Naftaly, Mira
2 / 3 shared
Nordon, Alison
2 / 9 shared
Vivacqua, Vincenzino
1 / 1 shared
Zeitler, J. Axel
2 / 16 shared
York, Andrew P. E.
1 / 1 shared
Bentley, Marian
1 / 1 shared
Huang, Karen
1 / 1 shared
Marigo, Michele
1 / 1 shared
Bawuah, Prince
3 / 5 shared
Al-Sharabi, Mohammed
1 / 3 shared
Maclean, Natalie
1 / 1 shared
Walsh, Erin
1 / 1 shared
Ter Horst, Joop
1 / 4 shared
Bezerra, Mariana
1 / 2 shared
Borman, Phil
1 / 1 shared
Almeida, Juan
1 / 1 shared
Schlindwein, Walkiria
1 / 1 shared
Berghaus, Andreas
1 / 1 shared
Paradkar, Anant
1 / 1 shared
Ward, Adam
1 / 4 shared
Blunt, Liam
1 / 23 shared
Walton, Karl
1 / 5 shared
Kelly, Adrian L.
1 / 25 shared
Alshafiee, Maen
1 / 1 shared
Aljammal, Mohammad K.
1 / 1 shared
Conway, Barbara R.
1 / 5 shared
Asare-Addo, Kofi
1 / 13 shared
Korde, Sachin
1 / 1 shared
Pagire, Sudhir K.
1 / 1 shared
Stegemann, Sven
1 / 1 shared
Hsiao, Wen Kai
1 / 1 shared
Paudel, Amrit
1 / 6 shared
Pichler, Heinz
1 / 1 shared
Planchette, Carole
1 / 1 shared
Wimmer-Teubenbacher, Miriam
1 / 1 shared
Gane, Patrick
1 / 12 shared
Peiponen, Kai Erik
2 / 2 shared
Ketolainen, Jarkko
2 / 5 shared
Ridgway, Cathy
2 / 2 shared
Gane, Patrick A. C.
1 / 6 shared
Zeitler, Ja
1 / 3 shared
Chakraborty, Mousumi
1 / 3 shared
Paudel, A.
1 / 2 shared
Kovalcik, A.
1 / 1 shared
Faulhammer, E.
1 / 1 shared
Wahl, V.
1 / 1 shared
Lawrence, S.
1 / 1 shared
Stelzer, F.
1 / 1 shared
Khinast, J. G.
1 / 1 shared
Wahl, Patrick
1 / 1 shared
Treffer, Daniel
1 / 1 shared
Koscher, Gerold
1 / 1 shared
Khinast, Johannes G.
2 / 2 shared
Roblegg, Eva
2 / 2 shared
Francois, Kjell
1 / 1 shared
Koller, Daniel M.
1 / 1 shared
Kavsek, Barbara
1 / 1 shared
Wahl, Patrick R.
1 / 1 shared
Menezes, José C.
1 / 1 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2016
2013

Co-Authors (by relevance)

  • Murphy, Keir N.
  • Naftaly, Mira
  • Nordon, Alison
  • Vivacqua, Vincenzino
  • Zeitler, J. Axel
  • York, Andrew P. E.
  • Bentley, Marian
  • Huang, Karen
  • Marigo, Michele
  • Bawuah, Prince
  • Al-Sharabi, Mohammed
  • Maclean, Natalie
  • Walsh, Erin
  • Ter Horst, Joop
  • Bezerra, Mariana
  • Borman, Phil
  • Almeida, Juan
  • Schlindwein, Walkiria
  • Berghaus, Andreas
  • Paradkar, Anant
  • Ward, Adam
  • Blunt, Liam
  • Walton, Karl
  • Kelly, Adrian L.
  • Alshafiee, Maen
  • Aljammal, Mohammad K.
  • Conway, Barbara R.
  • Asare-Addo, Kofi
  • Korde, Sachin
  • Pagire, Sudhir K.
  • Stegemann, Sven
  • Hsiao, Wen Kai
  • Paudel, Amrit
  • Pichler, Heinz
  • Planchette, Carole
  • Wimmer-Teubenbacher, Miriam
  • Gane, Patrick
  • Peiponen, Kai Erik
  • Ketolainen, Jarkko
  • Ridgway, Cathy
  • Gane, Patrick A. C.
  • Zeitler, Ja
  • Chakraborty, Mousumi
  • Paudel, A.
  • Kovalcik, A.
  • Faulhammer, E.
  • Wahl, V.
  • Lawrence, S.
  • Stelzer, F.
  • Khinast, J. G.
  • Wahl, Patrick
  • Treffer, Daniel
  • Koscher, Gerold
  • Khinast, Johannes G.
  • Roblegg, Eva
  • Francois, Kjell
  • Koller, Daniel M.
  • Kavsek, Barbara
  • Wahl, Patrick R.
  • Menezes, José C.
OrganizationsLocationPeople

article

Terahertz pulsed imaging as a new method for investigating the liquid transport kinetics of α-alumina powder compacts

  • Vivacqua, Vincenzino
  • Zeitler, J. Axel
  • York, Andrew P. E.
  • Bentley, Marian
  • Huang, Karen
  • Marigo, Michele
  • Bawuah, Prince
  • Al-Sharabi, Mohammed
  • Maclean, Natalie
  • Markl, Daniel
Abstract

<p>Investigating the liquid transport kinetics of solid catalysts is of great importance for gaining a better understanding of the manufacturing and performance of such catalysts during reaction upon contact with the liquid. Terahertz pulsed imaging (TPI) coupled with a newly designed flow cell was used to quantify the rate of water ingress into α-alumina pellets with a range of different porosities. A wide range of compaction forces (cold compaction, 7–58 kN) and sintering conditions (no firing and sintering at 1200 and 1300 °C) was investigated to explore the optimal pellet microstructure, i.e. mechanically strong but sufficiently porous for fast liquid transport kinetics. The results confirm that both the microstructure characteristics, particularly porosity, as well as the surface properties, i.e. wettability, influence the liquid transport kinetics. Fitting the TPI penetration rates with a power law shows that the type of observed mass transport characteristics is consistent with Darcy flow. The Lucas–Washburn equation was used to calculate the hydraulic radius based on the transport data. In summary, the results demonstrate that TPI has great potential to study the liquid transport kinetics of porous ceramic catalysts and catalyst supports and that can comfortably quantify transport processes at rates of 250 μm s<sup>−1</sup> and beyond in such substrates for better quality control and optimised design and performance of such materials.</p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • porosity
  • ceramic
  • sintering