People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ponnusami, Sathiskumar A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023A generalised deep learning-based surrogate model for homogenisation utilising material property encoding and physics-based boundscitations
- 2019Coupon scale Z-pinned IM7/8552 delamination tests under dynamic loadingcitations
- 2019Computational investigation of porosity effects on fracture behavior of thermal barrier coatingscitations
- 2018A micromechanical fracture analysis to investigate the effect of healing particles on the overall mechanical response of a self-healing particulate compositecitations
- 2018Modelling the fracture behaviour of thermal barrier coatings containing healing particlescitations
- 2014Position-dependent shear-induced austenite–martensite transformation in double-notched TRIP and dual-phase steel samplescitations
- 2014Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samplescitations
Places of action
Organizations | Location | People |
---|
article
Computational investigation of porosity effects on fracture behavior of thermal barrier coatings
Abstract
The influence of microstructural pore defects on fracture behaviour of Thermal Barrier Coatings (TBC) is analysed using finite element analysis involving cohesive elements. A concurrent multiscale approach is utilised whereby the microstructural features of the TBC are explicitly resolved within a unit cell embedded in a larger domain. Within the unit cell, a random distribution of pores is modelled along with three different layers in a TBC system, namely, the Top Coat (TC), the Bond Coat (BC) and the Thermally Grown Oxide (TGO). The TC/TGO and the TGO/BC interfaces are assumed to be sinusoidal of specified amplitude and frequency extracted from experimental observations reported in the literature. To simulate fracture in the TBC, cohesive elements are inserted throughout the inter-element boundaries in order to enable arbitrary crack initiation and propagation. A bilinear traction-separation relation with specified fracture properties for each layer is used to model the constitutive behaviour of the cohesive elements. Parametric studies are conducted for various pore geometrical features, porosity, fracture properties of Top Coat layer and Thermally Grown Oxide layer thicknesses. The results are quantified in terms of crack initiation and evolution. It is found that the presence of pores has a beneficial effect on the fracture behavior up to a certain value of porosity after which the pores become detrimental to the overall performance. Insights derived from the numerical results can help in understanding the failure behavior of practical TBC systems and further aid in engineering the TBC microstructure for a desired fracture behavior. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Aerospace Structures & Computational Mechanics ...