Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pinheiro, Tomás

  • Google
  • 6
  • 12
  • 344

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Influence of CO2 laser beam modelling on electronic and electrochemical properties of paper-based laser-induced graphene for disposable pH electrochemical sensors18citations
  • 2023Influence of CO2 laser beam modelling on electronic and electrochemical properties of paper-based laser-induced graphene for disposable pH electrochemical sensors18citations
  • 2022Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics52citations
  • 2022Water peel-off transfer of electronically enhanced, paper-based laser-induced graphene for wearable electronics52citations
  • 2021Laser-induced graphene on paper toward efficient fabrication of flexible, planar electrodes for electrochemical sensing102citations
  • 2021Laser-Induced Graphene on Paper toward Efficient Fabrication of Flexible, Planar Electrodes for Electrochemical Sensing102citations

Places of action

Chart of shared publication
Marques, Ana
3 / 11 shared
Coelho, João
6 / 12 shared
Ornelas, Cristina
2 / 2 shared
Rosa, André
2 / 2 shared
Martins, Rodrigo
6 / 166 shared
Marques, Ana C.
3 / 7 shared
Fortunato, Elvira
3 / 25 shared
Sales, M. Goreti F.
3 / 10 shared
Correia, Ricardo
2 / 4 shared
Morais, Maria
2 / 6 shared
Sales, M. G. F.
1 / 9 shared
Silvestre, Sara
2 / 2 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Marques, Ana
  • Coelho, João
  • Ornelas, Cristina
  • Rosa, André
  • Martins, Rodrigo
  • Marques, Ana C.
  • Fortunato, Elvira
  • Sales, M. Goreti F.
  • Correia, Ricardo
  • Morais, Maria
  • Sales, M. G. F.
  • Silvestre, Sara
OrganizationsLocationPeople

article

Influence of CO2 laser beam modelling on electronic and electrochemical properties of paper-based laser-induced graphene for disposable pH electrochemical sensors

  • Marques, Ana
  • Coelho, João
  • Ornelas, Cristina
  • Pinheiro, Tomás
  • Rosa, André
  • Martins, Rodrigo
Abstract

<p>Laser-induced graphene (LIG) allows for the fabrication of cost-effective, flexible electrodes on a multitude of recyclable and sustainable substrates, for implementation within electrochemical biosensors. This work expands on current LIG research, by experimentally modeling the effects of several CO<sub>2</sub> laser irradiation variables towards resulting conductive and electrochemical properties of paper-derived LIG. Instead of relying on the established paradigm of manipulating power and scan speed of the laser irradiation process for optimized outcomes, modeling of underlying laser operation principles for pulse modulation, regarding pulse repetition frequencies, pulse duration and defocus are presented as the key aspects dominating graphitization processes of materials. This approach shows that graphitization is dominated by appropriate pulse durations, dictating the time the substrate is exposed to each laser pulse, with laser fluence and irradiation defocus influencing the resulting conductive properties, with sheet resistances as low as 14 Ω sq<sup>−1</sup>. Similarly, fabrication settings controlled by these parameters have a direct influence on the properties of LIG-based electrochemical three-electrode cells, with optimized fabrication settings reaching electrochemically active surface area as high as 35 mm<sup>2</sup> and heterogeneous electron transfer rates of 3.4 × 10<sup>−3</sup> cm.s<sup>−1</sup>. As a proof-of-concept, the production of environmentally friendly, accessible, and biocompatible pH sensors is demonstrated, using two modification approaches, employing riboflavin and polyaniline as pH-sensitive elements.</p>

Topics
  • impedance spectroscopy
  • surface