People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koppolu, Rajesh
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticlescitations
- 2022Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticlescitations
- 2022Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticlescitations
- 2021On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose SurfaceviaOne-Pot Water-Phase Synthesiscitations
- 2021On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose Surface via One-Pot Water-Phase Synthesiscitations
- 2020Tailored thermosetting wood adhesive based on well-defined hardwood lignin fractionscitations
- 2020Cellulose nanofibrils and silver nanowires active coatings for the development of antibacterial packaging surfacescitations
- 2020Numerical analysis of slot die coating of nanocellulosic materialscitations
- 2020Numerical analysis of slot die coating of nanocellulosic materials
- 2020High-throughput processing of nanographite–nanocellulose-based electrodes for flexible energy devicescitations
- 2019Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatingscitations
- 2017Substrate role in coating of microfibrillated cellulose suspensionscitations
Places of action
Organizations | Location | People |
---|
article
Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticles
Abstract
<p>We propose an injectable nanocomposite hydrogel that is photo-curable via light-induced thiol-ene addition between methacrylate modified O-acetyl-galactoglucomannan (GGMMA) and thiolated cellulose nanocrystal (CNC-SH). Compared to free-radical chain polymerization, the orthogonal step-growth of thiol-ene addition allows a less heterogeneous hydrogel network and more rapid crosslinking kinetics. CNC-SH reinforced the GGMMA hydrogel as both a nanofiller and a crosslinker to GGMMA resulting in an interpenetrating network via thiol-ene addition. Importantly, the mechanical stiffness of the GGMMA/CNC-SH hydrogel is mainly determined by the stoichiometric ratio between the thiol groups on CNC-SH and the methacrylate groups in GGMMA. Meanwhile, the bioactive glass nanoparticle (BaGNP)-laden hydrogels of GGMMA/CNC-SH showed a sustained release of therapeutic ions in simulated body fluid in vitro, which extended the bioactive function of hydrogel matrix. Furthermore, the suitability of the GGMMA/CNC-SH formulation as biomaterial resin to fabricate digitally designed hydrogel constructs via digital light processing (DLP) lithography printing was evaluated.</p>