People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karagiannidis, Panagiotis
University of Sunderland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Magnetic-Responsive Triple Shape Memory Polymer from Bio-Based Benzoxazine/Urethane Polymer Alloys with Iron Oxide Nanoparticlescitations
- 2024Biocompatibility, thermal and mechanical properties of glass fiber‐reinforced polybenzoxazine composites as a potential new endodontic postcitations
- 2023New nanocomposites based on poly(benzoxazine-co-epoxy) matrix reinforced by novel graphene single and mixed blend fillerscitations
- 2023Mechanical properties and curing kinetics of bio-based benzoxazine–epoxy copolymer for dental fiber postcitations
- 2023Thermal Interface Materials with Hexagonal Boron Nitride and Graphene Fillers in PDMS Matrix: Thermal and Mechanical Propertiescitations
- 2022Development of a new birthing model material based on silicone rubber/ natural rubber blendcitations
- 2022Βio-Based Epoxy/Amine Reinforced with Reduced Graphene Oxide (rGO) or GLYMO-rGO: Study of Curing Kinetics, Mechanical Properties, Lamination and Bonding Performancecitations
- 2022Bio-Based Epoxy/Amine Reinforced with Reduced Graphene Oxide (rGO) or GLYMO-rGO: Study of Curing Kinetics, Mechanical Properties, Lamination and Bonding Performancecitations
- 2020Development of new graphene/epoxy nanocomposites and study of cure kinetics, thermal and mechanical propertiescitations
- 2020Effect of sintering techniques on microstructural, mechanical and tribological properties of Al-SiC compositescitations
- 2020Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFCcitations
- 2020Effects of chemical structure and morphology of graphene-related materials (GRMs) on melt processing and properties of GRM/polyamide-6 nanocompositescitations
- 2020Development of Lightweight and High-Performance Ballistic Helmet Based on Poly(Benzoxazine-co-Urethane) Matrix Reinforced with Aramid Fabric and Multi-Walled Carbon Nanotubescitations
- 20193-Phase Hierarchical Graphene-based Epoxy Nanocomposite Laminates for Automotive Applicationscitations
- 2019Development of graphene-based materials from printing inks and coatings to structural composites
- 2017Production of graphene by solution processing and development of graphene-based materials
- 2014Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticlescitations
- 2014High performance transistors based on the controlled growth of triisopropylsilylethynyl-pentacene crystals via non-isotropic solvent evaporationcitations
- 2013Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regenerationcitations
- 2012Novel nanostructured biomaterials: implications for coronary stent thrombosis.citations
- 2012Development of a nanoporous and multilayer drug-delivery platform for medical implantscitations
- 2009Physical Properties of a Hybrid and a Nanohybrid Dental Light-Cured Resin Compositecitations
Places of action
Organizations | Location | People |
---|
article
Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration
Abstract
ackground An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. Methods The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. Results All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. Conclusions The application of PEDOT polymers has evolved as a new perspective to advance stents. General significance In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.