People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rosiński, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experimentscitations
- 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glasscitations
- 2018Structure and mechanical properties of TiB 2 /TiC – Ni composites fabricated by pulse plasma sintering methodcitations
- 2011W/steel joint fabrication using the pulse plasma sintering (PPS) methodcitations
- 2010Nanocrystalline WC with non-toxic Fe-Mn bindercitations
- 2010Properties of WCCo/diamond composites produced PPS method intended for drill bits for machining of building stonescitations
- 2008Heat Sink Materials Processing by Pulse Plasma Sinteringcitations
- 2006Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Methodcitations
- 2006Nanocrystalline Cu-Al2O3 Composites Sintered by the Pulse Plasma Techniquecitations
- 2006NiAl–Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reactioncitations
- 2004Phase transformations in ball milled AISI 316L stainless steel powder and the microstructure of the steel obtained by its sintering
Places of action
Organizations | Location | People |
---|
article
Structure and mechanical properties of TiB 2 /TiC – Ni composites fabricated by pulse plasma sintering method
Abstract
TiB2/TiC – Ni composites were synthesized starting from the powders of Ti, B4C and Ni, using Pulse Plasma Sintering (PPS) method. Typically used one - step (1100°C–10 min.) and novel double-step sintering processes (900°C–10 min. +1100°C–5 min.) were applied and compared. XRD studies showed that the composite obtained by double-step sintering consisted of TiB2, TiC and Ni phases. For one-step pro-cessing additionally undesired Ni3B and graphite were detected. SEM observations revealed dark-grey grains of TiB2, light-grey grains of TiC (both around 25 mm in size) and Ni areas surrounded by TiC. The composites synthesized in one - and double - step processes revealed the hardness and relative density of 2335 HV5 (±110) and 97.8% and 2470 HV5 (±70) and 99.8%, respectively. Novel double - step sintering process allowed to avoid undesired phases (graphite, Ni3B) and only TiB2, TiC and Ni were present in the structure. Additionally it was possible to decrease the temperature of the process comparing to other fabrication methods.