People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grzyb, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Unleashing the glow : upconverting nanoparticles recharge persistent luminescent materials - applications in 3D-printing and optical codingcitations
- 2021Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathwayscitations
- 2019Experimental and theoretical investigations of the influence of carbon on a Ho3+-TiO2 photocatalyst with Vis responsecitations
- 2018Rare earth ions doped K2Ta2O6 photocatalysts with enhanced UV-vis light activitycitations
- 2017Preparation and photocatalytic activity of Nd-modified TiO2 photocatalysts: insight into the excitation mechanism under visible lightcitations
- 2016Luminescent cellulose fibers modified with cerium fluoride doped with terbium particlescitations
- 2016Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO<inf>4</inf>:Eu<sup>3+</sup>5%@SiO<inf>2</inf>@NH<inf>2</inf>citations
- 2015Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluoridescitations
- 2014Revised crystal structure and luminescent properties of gadolinium oxyfluoride Gd<inf>4</inf>O<inf>3</inf>F<inf>6</inf> doped with Eu<sup>3+</sup> ionscitations
- 2013Structural, spectroscopic and cytotoxicity studies of TbF <inf>3</inf>@CeF<inf>3</inf> and TbF<inf>3</inf>@CeF<inf>3</inf>@SiO<inf>2</inf> nanocrystalscitations
- 2013Hydrothermal synthesis and structural and spectroscopic properties of the new triclinic form of GdBO<inf>3</inf>:Eu<sup>3+</sup> nanocrystalscitations
- 2012Luminescent cellulose fibers activated by Eu <sup>3+</sup>-doped nanoparticlescitations
- 2012Tunable luminescence of Sr <inf>2</inf>CeO <inf>4</inf>:M <sup>2+</sup> (M = Ca, Mg, Ba, Zn) and Sr <inf>2</inf>CeO <inf>4</inf>:Ln <sup>3+</sup> (Ln = Eu, Dy, Tm) nanophosphorscitations
- 2012Magnetic and luminescent hybrid nanomaterial based on Fe <inf>3</inf>O <inf>4</inf> nanocrystals and GdPO <inf>4</inf>:Eu <sup>3+</sup> nanoneedlescitations
- 2011Structural and spectroscopic properties of LaOF:Eu<sup>3+</sup> nanocrystals prepared by the sol-gel Pechini methodcitations
Places of action
Organizations | Location | People |
---|
article
Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathways
Abstract
The aim of this study was to provide deep insight into photocatalytic degradation of ciprofloxacin (CIP) over CeO2/ZnO nanocomposites. Catalysts used in this work were synthesized by a simple co-precipitation method and fully characterized by means of XRD, nitrogen physisorption, TEM, UV–vis, PL and XPS. Degradation of CIP was tracked by UV–vis and LC-MS techniques and the mineralization efficiency was determined by TOC analyses. It was documented that CeO2/ZnO nanocomposites were ca. twice more active than undoped ZnO and ca. 10 times more active than pristine CeO2. The improved activity of the nanocomposites resulted from the formation of a Z-scheme heterojunction in which photo-excited electrons from the conduction band of ZnO migrate to the valence band of CeO2. Photocatalytic degradation of CIP over the nanocomposites was found to be a surface reaction in which CIP molecules adsorbed onto ZnO are directly oxidized by photogenerated holes (h+). Degradation of the antibiotic proceeded through two parallel pathways: i) pathway I (dominant) in which piperazine moiety of CIP molecules was selectively oxidized by h+, and ii) pathway II in which both fluoroquinolone and piperazine moieties of the antibiotic were degraded. The latter pathway required participation of both h+ and hydroxyl radicals (HO•).