People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arramel, Arramel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlookcitations
- 2023Vibrational and Structural Properties of Two-Dimensional Tin Mixed-Halide Perovskitescitations
- 2023Development and challenges in perovskite scintillators for high-resolution imaging and timing applicationscitations
- 2020Molecular functionalization of all-inorganic perovskite CsPbBr3 thin filmscitations
- 2020Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detectioncitations
- 2020Electronic and Optical Modulation of Metal-Doped Hybrid Organic–Inorganic Perovskites Crystals by Post-Treatment Controlcitations
- 2020Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakescitations
- 2019Surface molecular doping of all-inorganic perovskite using zethrenes moleculescitations
- 2019Design of perovskite photonic crystals for emission controlcitations
- 2019Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundariescitations
- 2016Towards molecular doping effect on the electronic properties of two-dimensional layered materialscitations
Places of action
Organizations | Location | People |
---|
article
Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes
Abstract
An optimum large specific surface area of sulfur-doped graphitic carbon nitride nanoflakes modified glassy carbon electrode (S-g-C3N4/GCE) is reported with promising lead ion (Pb2+) detection capability. This sensor was designed and fabricated using thermal polycondesation reaction. In terms of high selectivity Pb2+ performance, we noted that the sensor exhibited appreciable detection limit of 3.0 × 10−9 mol L−1 (S/N = 3) within the ionic specimen concentration range of 7.5 × 10−8 ~ 2.5 × 10−6 mol L−1 and 2.5 × 10−6 ~ 1 × 10−3 mol L−1. Corroborated by DFT calculations, we propose that the strong interaction of S-g-C3N4 interface and Pb2+ plays an important role to generate the aforementioned sensing characteristics. In practice, we conceived high detection of Pb2+ ions that reside in lake-water and mineral samples in which percentage recovery of 88–103 can be obtained under high repetition rate. Thus, S-g-C3N4/GCE can be considered as sensitive and selective electrochemical sensor for a reliable detecting heavy metal ions in domestic sewage and industrial wastewater.