People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nowaczyk, Grzegorz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathwayscitations
- 2018Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organizationcitations
- 2018GQDs-MSNs nanocomposite nanoparticles for simultaneous intracellular drug delivery and fluorescent imagingcitations
- 2018Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowirescitations
- 2018Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowirescitations
- 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloidscitations
- 2017Functionalized multimodal ZnO@Gd <inf>2</inf> O <inf>3</inf> nanosystems to use as perspective contrast agent for MRIcitations
- 2016Combined reactive/non-reactive DC magnetron sputtering of high temperature composite AlN-TiB <inf>2</inf> -TiSi <inf>2</inf>citations
- 2016Synthesis and study of bifunctional core-shell nanostructures based on ZnO@Gd<inf>2</inf>O<inf>3</inf>citations
- 2016Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofiberscitations
- 2016Gradient nanostructured coatings obtained by magnetron sputtering of a multiphase AlN–TiB<inf>2</inf>–TiSi<inf>2</inf> targetcitations
- 2016High temperature behavior of functional TiAlBSiN nanocomposite coatingscitations
- 2015Tuning the photodynamic efficiency of TiO<inf>2</inf> nanotubes against HeLa cancer cells by Fe-dopingcitations
- 2015Characterization of poly(ethylene 2,6-naphthalate)/polycarbonate blends by DSC, NMR off-resonance and DMTA methodscitations
- 2015Tailoring the structural, optical, and photoluminescence properties of porous silicon/TiO<inf>2</inf> nanostructurescitations
- 2015Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etchingcitations
- 2015Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapycitations
- 2015Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological featurescitations
- 2015Study on Structural, Mechanical, and Optical Properties of Al<inf>2</inf>O<inf>3</inf>-TiO<inf>2</inf> Nanolaminates Prepared by Atomic Layer Depositioncitations
- 2010Molecular dynamics in grafted polydimethylsiloxanescitations
Places of action
Organizations | Location | People |
---|
article
Functionalized multimodal ZnO@Gd <inf>2</inf> O <inf>3</inf> nanosystems to use as perspective contrast agent for MRI
Abstract
<p>The main aim of this research was the synthesis of the multimodal hybrid ZnO@Gd<sub>2</sub>O<sub>3</sub>nanostructures as prospective contrast agent for Magnetic Resonance Imaging (MRI) for bio-medical applications. The nanoparticles surface was functionalized by organosilicon compounds (OSC) then, by folic acid (FA) as targeting agent and doxorubicin (Dox) as chemotherapeutic agent. Doxorubicin and folic acid were attached to the nanoparticles surface by amino groups as well as due to attractive physical interactions. The morphology and crystallography of the nanostructures were studied by HRTEM and SAXS techniques. After ZnO nanoparticles surface modification by Gd<sup>3+</sup>and annealing at 900 °C, ZnO@Gd<sub>2</sub>O<sub>3</sub>nanostructures are polydispersed with size 30–100 nm. NMR (Nuclear Magnetic Resonance) studies of ZnO@Gd<sub>2</sub>O<sub>3</sub>were performed on fractionated particles with size up to 50 nm. Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, zeta-potential measurements and energy dispersive X-ray analysis (EDX) showed that functional groups have been effectively bonded onto the nanoparticles surface. The high adsorption capacity of folic acid (up to 20%) and doxorubicin (up to 40%) on nanoparticles was reached upon 15 min of adsorption process in a temperature-dependent manner. The nuclear magnetic resonance (NMR) relaxation measurements confirmed that the obtained ZnO@Gd<sub>2</sub>O<sub>3</sub>nanostructures could be good contrast agents, useful for magnetic resonance imaging.</p>