Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Williams, Howard

  • Google
  • 1
  • 5
  • 112

University of Huddersfield

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Cs-doped H4SiW12O40 catalysts for biodiesel applications112citations

Places of action

Chart of shared publication
Montero, J. M.
1 / 1 shared
Brown, D. R.
1 / 1 shared
Lee, A. F.
1 / 2 shared
Pesaresi, L.
1 / 1 shared
Wilson, K.
1 / 11 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Montero, J. M.
  • Brown, D. R.
  • Lee, A. F.
  • Pesaresi, L.
  • Wilson, K.
OrganizationsLocationPeople

article

Cs-doped H4SiW12O40 catalysts for biodiesel applications

  • Williams, Howard
  • Montero, J. M.
  • Brown, D. R.
  • Lee, A. F.
  • Pesaresi, L.
  • Wilson, K.
Abstract

<p>Cs exchanged silicotungstic acid catalysts of general formula Cs<sub>x</sub>H<sub>4-x</sub>SiW<sub>12</sub>O<sub>40</sub> (x = 0.8-4) have been synthesised and characterised by a range of techniques including elemental analysis, N<sub>2</sub> gas adsorption, XRD, XPS and NH<sub>3</sub> flow calorimetry. Cs substitution promotes recrystallisation of the parent H<sub>4</sub>SiW<sub>12</sub>O<sub>40</sub> polyoxometallate to the Cs<sub>4</sub> salt, via a stable intermediate phase formed at compositions between Cs<sub>0.8-2.8</sub>. This recrystallisation is accompanied by a pronounced rise and subsequent fall in porosity, with a maximum mesopore volume obtained for materials containing 2.8 Cs atoms per Keggin unit. Calorimetry reveals all Cs<sub>x</sub>H<sub>4-x</sub>SiW<sub>12</sub>O<sub>40</sub> are strong acids, with ΔH<sup>θ</sup><sub>ads</sub>(NH<sub>3</sub>) ranging from -142 to 116 kJ mol<sup>-1</sup> with increasing Cs content, consistently weaker than their phosphotungstic analogues. Cs<sub>x</sub>H<sub>4-x</sub>SiW<sub>12</sub>O<sub>40</sub> materials are active catalysts for both C<sub>4</sub> and C<sub>8</sub> triglyceride transesterification, and palmitic acid esterification with methanol. For loadings ≤0.8 Cs per Keggin, (trans)esterification activity arises from homogeneous contributions. However, higher degrees of substitution result in entirely heterogeneous catalysis, with rates proportional to the density of accessible acid sites present within mesopores.</p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • porosity
  • elemental analysis
  • calorimetry