Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Motrunich, Sviatoslav

  • Google
  • 4
  • 26
  • 49

E.O. Paton Electric Welding Institute

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023CMT-based wire arc additive manufacturing of Inconel 625 alloy2citations
  • 2023Non-equimolar Cantor high entropy alloy fabrication using metal powder cored wire arc additive manufacturing17citations
  • 2022Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications22citations
  • 2021Noise level assessment and mechanical properties of welded joints of aluminium alloys of the Al-Cu-Li system in FSW and TIG welding8citations

Places of action

Chart of shared publication
Junwen, Ji
1 / 1 shared
Friederichs, Sabine
1 / 1 shared
Vedel, Dmytro
1 / 1 shared
Baudin, Thierry
3 / 90 shared
Klochkov, Ilya
2 / 3 shared
Skoryk, Mykola
3 / 7 shared
Zavdoveev, Anatoliy
3 / 16 shared
Strelenko, Natalia
1 / 1 shared
Brisset, François
1 / 50 shared
Klapatyuk, Andrey
1 / 1 shared
Oliveira, Joao
1 / 3 shared
Kozin, Roman
1 / 1 shared
Mohan, Dhanesh
1 / 1 shared
Poznyakov, Valeriy
1 / 10 shared
Klochkov, Illya
1 / 1 shared
Heaton, Mark
2 / 8 shared
Vedel, Dmitry
1 / 1 shared
Kim, Hyoung Seop
1 / 16 shared
Gajvoronskiy, Alex
2 / 2 shared
Rogante, Massimo
2 / 15 shared
Khokhlov, Maksym
1 / 2 shared
Macdonald, Eric
1 / 8 shared
Denisenko, Anatoliy
1 / 2 shared
Aquier, Philippe
1 / 1 shared
Kim, Hyoung, Seop
1 / 4 shared
Pozniakov, Valeriy
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Junwen, Ji
  • Friederichs, Sabine
  • Vedel, Dmytro
  • Baudin, Thierry
  • Klochkov, Ilya
  • Skoryk, Mykola
  • Zavdoveev, Anatoliy
  • Strelenko, Natalia
  • Brisset, François
  • Klapatyuk, Andrey
  • Oliveira, Joao
  • Kozin, Roman
  • Mohan, Dhanesh
  • Poznyakov, Valeriy
  • Klochkov, Illya
  • Heaton, Mark
  • Vedel, Dmitry
  • Kim, Hyoung Seop
  • Gajvoronskiy, Alex
  • Rogante, Massimo
  • Khokhlov, Maksym
  • Macdonald, Eric
  • Denisenko, Anatoliy
  • Aquier, Philippe
  • Kim, Hyoung, Seop
  • Pozniakov, Valeriy
OrganizationsLocationPeople

article

Non-equimolar Cantor high entropy alloy fabrication using metal powder cored wire arc additive manufacturing

  • Brisset, François
  • Klapatyuk, Andrey
  • Oliveira, Joao
  • Kozin, Roman
  • Mohan, Dhanesh
  • Poznyakov, Valeriy
  • Klochkov, Illya
  • Heaton, Mark
  • Baudin, Thierry
  • Vedel, Dmitry
  • Kim, Hyoung Seop
  • Gajvoronskiy, Alex
  • Motrunich, Sviatoslav
  • Skoryk, Mykola
  • Rogante, Massimo
  • Khokhlov, Maksym
  • Zavdoveev, Anatoliy
  • Macdonald, Eric
Abstract

© 2023 The Author(s) This work was supported by the National Academy of Sciences of Ukraine [Grant Number 0117U001666] and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2021R1A2C3006662). We would like to thank the Murchison Endowment at the University of Texas at El Paso.The authors are grateful to Dr. M. Speicher (Wissenschaftlerin bei Universität Stuttgart), Dr. S. Moskalyuk (G. V. Kurdyumov Institute of Metal Physics of the NAS of Ukraine), Eng. E.Los and T.Solomijchuk (Paton Electric Welding Institute of NAS of Ukraine) for help in experiments. ; In the current contribution, the wire arc additive manufacturing of non-equimolar Co-Cr-Fe-Mn-Ni high-entropy alloy using gas metal arc welding (GMAW) with metal powder-cored wire (MPCW) is proposed. The powder's filler of designed wire feedstock contains Co-Cr-Mn-Ni components in equal atomic amounts relative to each other with Fe metal stripe as a shield. The proposed method provides the possibility to build bulk high-entropy alloy samples with the desired characteristics. The current work approach is superior in a number of indicators to such alternative methods of obtaining bulk HEAs as melting in vacuum, plasma arc melting, selective laser melting, or electron beam melting. ; publishersversion ; published

Topics
  • impedance spectroscopy
  • experiment
  • selective laser melting
  • wire
  • electron beam melting
  • additive manufacturing