People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Isaksson, Hanna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Impact of storage time prior to cryopreservation on mechanical properties of aortic homograftscitations
- 2022Crack propagation in articular cartilage under cyclic loading using cohesive finite element modelingcitations
- 2022Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatitecitations
- 2022Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatitecitations
- 2021Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interfacecitations
- 2021Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interfacecitations
- 2020Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interfacecitations
- 2020Bone Damage Evolution Around Integrated Metal Screws Using X-Ray Tomographycitations
- 2020Comparison of small‐angle neutron and X‐ray scattering for studying cortical bone nanostructurecitations
- 2020The influence of microstructure on crack propagation in cortical bone at the mesoscalecitations
- 2019An interface damage model that captures crack propagation at the microscale in cortical bone using XFEMcitations
- 2019Crack propagation in cortical bone is affected by the characteristics of the cement line : a parameter study using an XFEM interface damage modelcitations
- 2019Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitutecitations
- 2017Neutron tomographic imaging of bone-implant interfacecitations
- 2016Differences in acoustic impedance of fresh and embedded human trabecular bone samples - scanning acoustic microscopy and numerical evaluationcitations
- 2016Bone mineral crystal size and organization vary across mature rat bone cortexcitations
- 2016How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurementscitations
Places of action
Organizations | Location | People |
---|
article
Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interface
Abstract
<p>A better understanding of bone nanostructure around the bone-implant interface is essential to improve longevity of clinical implants and decrease failure risks. This study investigates the spatio-temporal evolution of mineral crystal thickness and plate orientation in newly formed bone around the surface of a metallic implant. Standardized coin-shaped titanium implants designed with a bone chamber were inserted into rabbit tibiae for 7 and 13 weeks. Scanning measurements with micro-focused small-angle X-ray scattering (SAXS) were carried out on newly formed bone close to the implant and in control mature cortical bone. Mineral crystals were thinner close to the implant (1.8 ± 0.45 nm at 7 weeks and 2.4 ± 0.57 nm at 13 weeks) than in the control mature bone tissue (2.5 ± 0.21 nm at 7 weeks and 2.8 ± 0.35 nm at 13 weeks), with increasing thickness over healing time (+30 % in 6 weeks). These results are explained by younger bone close to the implant, which matures during osseointegration. Thinner mineral crystals parallel to the implant surface within the first 100 µm close to the implant indicate that the implant affects bone ultrastructure close to the implant, potentially due to heterogeneous interfacial stresses, and suggest a longer maturation process of bone tissue and difficulty in binding to the metal. The bone growth kinetics within the bone chamber was derived from the spatio-temporal evolution of bone tissue's nanostructure, coupled with microtomographic imaging. The findings indicate that understanding mineral crystal thickness or plate orientation can improve our knowledge of osseointegration.</p>