People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allegri, Giuliano
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Fuzzy overbraids for improved structural performance
- 2024Evaluation of manufacturing methods for pultruded rod based hierarchical composite structural members with minimal porosity
- 2024Cobotic manufacture of hierarchically architectured composite materials
- 2024Characterisation of Highly-Aligned, Discontinuous, Fibre Composites for Compressive Performance
- 2023Assessing the mechanical and static aeroelastic performance of cellular Kirigami wingbox designscitations
- 2023Assessing the mechanical and static aeroelastic performance of cellular Kirigami wingbox designscitations
- 2023Fatigue Delaminations in Composites for Wind Turbine Blades with Artificial Wrinkle Defectscitations
- 2023Fatigue Delaminations in Composites for Wind Turbine Blades with Artificial Wrinkle Defectscitations
- 2023Failure analysis of unidirectional composites under longitudinal compression considering defects
- 2022MANUFACTURING OF NOVEL HIERARCHICAL HYBRIDISED COMPOSITES
- 2022MANUFACTURING OF NOVEL HIERARCHICAL HYBRIDISED COMPOSITES
- 2022Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixitiescitations
- 2022Sensing delamination in composites reinforced by ferromagnetic Z-pins via electromagnetic inductioncitations
- 2021A route to sustainable aviationcitations
- 2021Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixitiescitations
- 2021Effects of ferromagnetic & carbon-fibre Z-Pins on the magnetic properties of compositescitations
- 2021Mode I and Mode II interfacial fracture energy of SiC/BN/SiC CMCscitations
- 2020An energy-equivalent bridging map formulation for modelling delamination in through-thickness reinforced composite laminatescitations
- 2020A Unified Formulation for Fatigue Crack Onset and Growth via Cohesive Zone Modelling
- 2019Coupon scale Z-pinned IM7/8552 delamination tests under dynamic loadingcitations
- 2019Z-Pin Through-thickness enhancement of a composite laminate with variable thickness
- 2018Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delaminationcitations
- 2017Dynamic bridging mechanisms of through-thickness reinforced composite laminates in mixed mode delaminationcitations
- 2016An Experimental Investigation into Multi-Functional Z-pinned Composite Laminatescitations
- 2016On the delamination self-sensing function of Z-pinned composite laminatescitations
- 2016A Simplified Layered Beam Approach for Predicting Ply Drop Delamination in Thick Composite Laminatescitations
- 2015Through-thickness sensing of single Z-pin reinforced composite laminates
- 2015A cut-ply specimen for the mixed-mode fracture toughness and fatigue characterisation of FRPscitations
- 2013A new semi-empirical law for variable stress-ratio and mixed-mode fatigue delamination growthcitations
- 2013Buffeting mitigation using carbon nanotube composites: a feasibility studycitations
- 2013Buffeting mitigation using carbon nanotube compositescitations
- 2010An approach for dealing with high local stresses in finite element analysescitations
Places of action
Organizations | Location | People |
---|
article
Mode I and Mode II interfacial fracture energy of SiC/BN/SiC CMCs
Abstract
Quantifying the mixed mode fracture toughness of interfaces in ceramic matrix composites (CMCs) is crucial for understanding their failure. In this work we use in situ micromechanical testing in the scanning electron microscope to achieve stable interfacial crack propagation in Mode I (Double Cantilever Beam) and Mode II (Push out) and measure the corresponding fracture resistances. We use this approach to measure the interfacial fracture resistance in SiC/BN/SiC CMCs and compare it to the fracture energy of the fibres. During in-situ testing, fracture paths can be observed while data is acquired simultaneously. We clearly observe debonding at the BN-fibre interface (i.e. inside adhesive debonding). The critical energy release rate of the BN-fibre interface for Mode I and II (G I c ≈ 2.1 ± 1.0 J/m 2 and G II c ≈ 1.2 ± 0.5 J/m 2 ) are equivalent and is lower than that measured for the fibre using microscopic DCB tests (G I c ≈ 6.0 ± 2.0 J/m 2 ). These results explain the generalized fibre debonding and pull out observed in the fracture of these CMCs. By enabling direct observation of crack paths and quantifying the corresponding fracture energies, we highlight possible routes for the optimisation and modelling of the new generation of CMC interphases.