People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reed, Roger
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2015Linear friction welding of Ti6Al4V: experiments and modellingcitations
- 2015Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizescitations
- 2012The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2012Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloyscitations
- 2012A model for the creep deformation behaviour of nickel-based single crystal superalloyscitations
- 2012Coupled thermodynamic/kinetic model for hydrogen transport during electron beam welding of titanium alloycitations
- 2011Linear friction welding of Ti-6Al-4V: Modelling and validationcitations
- 2009Coupled modelling of solidification and solution heat treatment of advanced single crystal nickel base superalloycitations
- 2009Alloys-By-Design: Application to nickel-based single crystal superalloyscitations
- 2009Phase-field modelling of as-cast microstructure evolution in nickel-based superalloyscitations
Places of action
Organizations | Location | People |
---|
article
Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys
Abstract
A modelling approach is presented for the prediction of microstructure evolution during directional solidification of nickel-based superalloys. A phase-field model is coupled to CALPHAD thermodynamic and kinetic (diffusion) databases, so that a multicomponent alloy representative of those used in industrial practice can be handled. Dendritic growth and the formation of interdendritic phases in an isothermal (2-D) cross-section are simulated for a range of solidification parameters. The sensitivity of the model to changes in the solidification input parameters is investigated. It is demonstrated that the predicted patterns of microsegregation obtained from the simulations compare well to the experimental ones; moreover, an experimentally observed change in the solidification sequence is correctly predicted. The extension of the model to 3-D simulations is demonstrated. Simulations of the homogenization of the as-cast structure during heat treatment are presented. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.