People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fernandes, Aa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2021Fatigue performance prediction of S235 base steel plates in the riveted connectionscitations
- 2020Fatigue behaviour of bolted joints for rack structurescitations
- 2020Fatigue behavior of cold roll-formed rail profiles for rack structures
- 2019Influence of fillet end geometry on fatigue behaviour of welded jointscitations
- 2018Fatigue analysis of a railway bridge based on fracture mechanics and local modelling of riveted connectionscitations
- 2017ULTRA-LOW-CYCLE FATIGUE BEHAVIOR OF FULL-SCALE STRAIGHT PIPES UNDER ALTERNATING BENDINGcitations
- 2017Strain-based approach for fatigue crack propagation simulation of the 6061-T651 aluminium alloycitations
- 2017Combined analytical-numerical methodologies for the evaluation of mixed-mode (I plus II) fatigue crack growth rates in structural steelscitations
- 2016Monotonic, Low-Cycle Fatigue, and Ultralow-Cycle Fatigue Behaviors of the X52, X60, and X65 Piping Steel Gradescitations
- 2016A new ultra-low cycle fatigue model applied to the X60 piping steelcitations
- 2015Study of formability of sandwich shells with metal foam cores based on punch penetration test
- 2015ULTRA-LOW-CYCLE FATIGUE BEHAVIOUR OF FULL-SCALE ELBOWS
- 2014Study on the forming of sandwich shells with closed-cell foam corescitations
- 2014COMPARISON OF THE MONOTONIC, LOW-CYCLE AND ULTRA-LOW-CYCLE FATIGUE BEHAVIOURS OF THE X52, X60 AND X65 PIPING STEEL GRADEScitations
- 2013STUDY OF FORMABILITY OF SANDWICH SHELLS WITH METAL FOAM COREScitations
- 2012Numerical Modelling and Experimental Study of Sandwich Shells with Metal Foam Corescitations
- 2012Numerical and experimental study of the bulge test of sandwich shells with metal foam cores
- 2012RETROFITTING OF OLD RIVETED PORTUGUESE BRIDGES. PAST AND CURRENT REMNANT LIFE ASSESSMENT RESEARCH
- 2011Modeling of Sandwich Sheets with Metallic Foamcitations
- 2011Strain-life and crack propagation fatigue data from several Portuguese old metallic riveted bridgescitations
- 2011FEM analysis of Sandwich Shells with Metallic Foam Corescitations
- 2011Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Testcitations
- 2011NUMERICAL AND EXPERIMENTAL STUDY OF SANDWICH PLATES WITH METALLIC FOAM CORES
- 2010STUDY OF SANDWICH SHELLS WITH METALLIC FOAM COREScitations
- 2010Correlation analysis of MAC robotized welding parameters by the Taguchi technique
- 2008Analysis of Fatigue Damage under Block Loading in a Low Carbon Steelcitations
- 2007Fatigue assessment of welded tubular steel structures details by using FEM
- 2007Influence of the submerged arc welding in the mechanical behaviour of the P355NL1 steel - part II: analysis of the low/high cycle fatigue behaviourscitations
- 2006Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steelcitations
- 2006Fatigue behaviour of riveted steel lap jointscitations
- 2006A discussion on the performance of continuum plasticity models for fatigue lifetime assessment based on the local strain approach
- 2005Finite element modeling of fatigue damage using a continuum damage mechanics approachcitations
- 2004Finite element modelling of fatigue damage using a continuum damage mechanics approachcitations
- 2001Fracture analysis of forks of a heavy duty lift truckcitations
Places of action
Organizations | Location | People |
---|
article
Study on the forming of sandwich shells with closed-cell foam cores
Abstract
The efficiency and safety of vehicles represent today one of the most important lines of developing in the automotive industry, for example by the introduction of new materials. In fact, the investment in advanced materials represents one of the most important strategies to reduce injury among vehicle occupants in traffic accidents. Associated with the development of safety systems, there is also the possibility of improving efficiency by the introduction of materials that lead to weight reduction, having a direct impact on fuel consumption and carbon dioxide emissions. Metallic foams are one of these materials, due to the excellent ratio between mechanical properties and density. The main goal of this investigation is to study the mechanical behaviour of aluminium sandwich structures, composed by a metallic foam core with two outer layers of metallic sheets. With this work, the authors intend to contribute to a better understanding and consequently to provide design guidelines for the plastic forming of these composites. In order to correctly characterize the mechanical behaviour of the sandwich structure, the foam core and sheets were tested separately. For the aluminium sheet a series of tensile tests were performed, using samples obtained along three different angles to the rolling direction. For the metal foam core, uniaxial compression tests were used. Finally, with the numerical model defined considering isotropic and anisotropic constitutive models, a set of numerical and experimental bulge tests were performed to evaluate the capacity of forming of these panels, using hydroforming processes.