Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nawrocki, J.

  • Google
  • 1
  • 9
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016The Influence of the Melt-Pouring Temperature and Inoculant Content on the Macro and Microstructure of the IN713C Ni-Based Superalloy20citations

Places of action

Chart of shared publication
Bałkowiec, Alicja
1 / 3 shared
Koralnik, Mateusz
1 / 9 shared
Kurzydłowski, Krzysztof
1 / 114 shared
Dobkowski, K.
1 / 1 shared
Zagórska, Małgorzata
1 / 9 shared
Matysiak, Hubert
1 / 3 shared
Cygan, Rafał
1 / 5 shared
Cwajna, Jan
1 / 1 shared
Adamczyk-Cieślak, Bogusława
1 / 77 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Bałkowiec, Alicja
  • Koralnik, Mateusz
  • Kurzydłowski, Krzysztof
  • Dobkowski, K.
  • Zagórska, Małgorzata
  • Matysiak, Hubert
  • Cygan, Rafał
  • Cwajna, Jan
  • Adamczyk-Cieślak, Bogusława
OrganizationsLocationPeople

article

The Influence of the Melt-Pouring Temperature and Inoculant Content on the Macro and Microstructure of the IN713C Ni-Based Superalloy

  • Bałkowiec, Alicja
  • Koralnik, Mateusz
  • Kurzydłowski, Krzysztof
  • Dobkowski, K.
  • Zagórska, Małgorzata
  • Nawrocki, J.
  • Matysiak, Hubert
  • Cygan, Rafał
  • Cwajna, Jan
  • Adamczyk-Cieślak, Bogusława
Abstract

<p>The aim of this work was to determine the effect of melt-pouring temperature T<sub>m</sub> and inoculant (cobalt aluminate—CoAl<sub>2</sub>O<sub>4</sub>) concentration in the prime coat of the shell mold on the macro- and microstructure of the IN713C superalloy. The results show that cobalt aluminate is an effective modifier of the IN713C superalloy, which causes refinement of the equiaxed grains (EX) and a reduction of the fraction and size of the columnar grains on the casting surface. Also, the melt-pouring temperature in the range of 1450–1520°C was found to influence the mean EX grain size. Based on the results of differential thermal analysis of the alloy and detailed microstructure characterization, a sequence of precipitations has been proposed that advances current understanding of processes that take place during alloy solidification and casting cooling.</p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • melt
  • precipitation
  • casting
  • cobalt
  • superalloy
  • differential thermal analysis