People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sofia Ramos, As
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2016Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayerscitations
- 2013Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayerscitations
- 2012Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayercitations
- 2011Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foilscitations
Places of action
Organizations | Location | People |
---|
article
Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayers
Abstract
The microstructure of similar and dissimilar diffusion bonds of metallic materials using reactive Ni/Ti interlayers was studied in this investigation. The base material surfaces were modified by sputter deposition of alternated Ni and Ti nanolayers. These nanolayers increase the diffusivity at the interface, enhancing the bonding process. Bonding experiments were performed at 800 A degrees C under a pressure of 10 MPa with a bonding time of 60 min. The reaction zone was characterized by high-resolution scanning and transmission electron microscopies. Microstructural characterization reveals that similar (NiTi to NiTi and TiAl to TiAl) and dissimilar (NiTi to Ti6Al4V and TiAl to stainless steel) joints can be obtained successfully with Ni/Ti reactive nanolayers. The interfaces are thin (< 10 A mu m) and their microstructure (thickness and number of zones, size and shape of the grains) depends on the elements diffusing from the base materials. For all joints, the interface is mainly composed of equiaxed grains of NiTi and NiTi2.