People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bell, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Binary Intermetallics in the 70 atom % R Region of Two R-Pd Systems (R = Tb and Er)citations
- 2018From the Nonexistent Polar Intermetallic Pt3Pr4 via Pt2- xPr3 to Pt/Sn/Pr Ternariescitations
- 2018An Obscured or Nonexistent Binary Intermetallic, CO7Pr17, Its Existent Neighbor Co2Pr5, and Two New Ternaries in the System Co/Sn/Pr, CoSn3Pr1−x, and Co2−xSn7Pr3citations
- 2011Evaluation of the biocompatibility of S-phase layers on medical grade austenitic stainless steels.citations
- 2007Low-temperature plasma surface alloying of medical grade austenitic stainless steel with carbon and nitrogencitations
- 2006The role of sublayer in determining the load bearing capacity of nitrocarburised pure ironcitations
- 2004Surface chemical and nanomechanical aspects of air PIII-treated Ti and Ti-alloycitations
- 2002Surface engineering of Timet 550 with oxygen to form a rutile-based, wear-resistant coatingcitations
- 2001Methods of case hardening
- 2001Duplex surface treatment of high strength Timetal 550 alloy towards high load-bearing capacitycitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of the biocompatibility of S-phase layers on medical grade austenitic stainless steels.
Abstract
S-phase surface layers were formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C). The presence of the S-phase was confirmed by microscopy, hardness testing, depth-profile analysis of chemical composition and X-ray Diffraction. Attachment and proliferation of mouse osteoblast MC3T3-E1 cells were tested on S-phase and untreated controls and the results demonstrated that all the S-phase layers formed were biocompatible under the conditions used. Cells adhered equally well to all samples but proliferation was enhanced on the treated materials.