Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siddiqi, S. A.

  • Google
  • 6
  • 33
  • 173

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2016Mesenchymal stem cell (MSC) viability on PVA and PCL polymer coated hydroxyapatite scaffolds derived from cuttlefish17citations
  • 2016Efficient drug delivery system for bone repair by tuning the surface of hydroxyapatite particles25citations
  • 2015A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass34citations
  • 2015Structural, surface, in vitro bacterial adhesion and biofilm formation analysis of three dental restorative composites32citations
  • 2015Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration55citations
  • 2014Polymer-assisted deposition of hydroxyapatite coatings using electrophoretic technique10citations

Places of action

Chart of shared publication
Rehman, Ihtesham Ur
6 / 71 shared
Tariq, M.
1 / 4 shared
Manzoor, F.
3 / 5 shared
Jamal, A.
2 / 2 shared
Chaudhry, A.
1 / 1 shared
Kamran, M.
1 / 2 shared
Ahmad, R.
2 / 30 shared
Chaudhry, A. A.
3 / 10 shared
Gilani, M. A.
1 / 2 shared
Zarif, F.
1 / 1 shared
Tabassum, S.
1 / 1 shared
Zahid, S.
1 / 2 shared
Rehman, F.
1 / 3 shared
Khan, A. F.
1 / 1 shared
Iqbal, B.
1 / 2 shared
Ahmad, S.
1 / 22 shared
Shah, A. T.
1 / 2 shared
Ain, Q.
1 / 1 shared
Chauhdry, A. A.
1 / 1 shared
Khan, A. S.
2 / 19 shared
Muzzafar, D.
1 / 1 shared
Faryal, R.
1 / 1 shared
Azam, M. T.
1 / 2 shared
Qureshi, Z.-U.-A.
1 / 1 shared
Shahzadi, L.
1 / 4 shared
Mahmood, N.
1 / 3 shared
Farooq, A.
1 / 3 shared
Yar, M.
1 / 4 shared
Rauf, A.
1 / 3 shared
Khalid, H.
1 / 3 shared
Ch, A. A.
1 / 1 shared
Awais, M.
1 / 3 shared
Mehboob, H.
1 / 2 shared
Chart of publication period
2016
2015
2014

Co-Authors (by relevance)

  • Rehman, Ihtesham Ur
  • Tariq, M.
  • Manzoor, F.
  • Jamal, A.
  • Chaudhry, A.
  • Kamran, M.
  • Ahmad, R.
  • Chaudhry, A. A.
  • Gilani, M. A.
  • Zarif, F.
  • Tabassum, S.
  • Zahid, S.
  • Rehman, F.
  • Khan, A. F.
  • Iqbal, B.
  • Ahmad, S.
  • Shah, A. T.
  • Ain, Q.
  • Chauhdry, A. A.
  • Khan, A. S.
  • Muzzafar, D.
  • Faryal, R.
  • Azam, M. T.
  • Qureshi, Z.-U.-A.
  • Shahzadi, L.
  • Mahmood, N.
  • Farooq, A.
  • Yar, M.
  • Rauf, A.
  • Khalid, H.
  • Ch, A. A.
  • Awais, M.
  • Mehboob, H.
OrganizationsLocationPeople

article

A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass

  • Khan, A. F.
  • Rehman, Ihtesham Ur
  • Siddiqi, S. A.
  • Chaudhry, A. A.
  • Iqbal, B.
  • Ahmad, S.
  • Shah, A. T.
  • Ain, Q.
Abstract

A novel mesoporous bioactive glass (MBG) of composition 64SiO 2 –26CaO–10P 2 O 5 (mol %) was prepared by hydrothermal method using H 3 PO 4 as a precursor for P 2 O 5 . The effect of use of organic triethylphosphate (TEP) and inorganic H 3 PO 4 in MBG synthesis on glass transition temperature (T g ), crystallinity, morphology and bioactivity of MBGs was studied. Phase purity determination and structural analysis were done using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, respectively. XRD revealed that MBG prepared from H 3 PO 4 (MBG-H 3 PO 4 ) when sintered at 700 °C was partially glassy/amorphous in nature and contained a mixture of crystalline apatite, wollastonite, calcium phosphate and calcium silicate phases. Calcined MBG prepared from TEP (MBG-TEP) contained only wollastonite and calcium silicate phases. Particle size and surface area determined by BET surface area analysis showed higher surface area (310 m 2  g −1 ) for MBG-H 3 PO 4 as compared to MBG-TEP (86 m 2  g −1 ). It also had a smaller particle size (20 nm) and 70 % higher pore volume (0.88 cm 3  g −1 ) for MBG-H 3 PO 4 as compared to MBG-TEP (60 nm particle size and 0.23 cm 3  g −1 pore volume). Thermal studies showed that use of H 3 PO 4 decreases T g and increased ΔT (difference between T g and crystallization initiation temperature Tc o ). Low T g and high ΔT also enhanced bioactivity of MBGs. Bioactivity was determined by immersion in a simulated body fluid for varying time intervals for a maximum period of 14 days. It revealed enhanced bioactivity, as evident by the formation of apatite layer on the surface, for MBG-H 3 PO 4 as compared to MBG-TEP. Scanning electron microscopy and FTIR spectroscopy also supported this observation. Antibacterial studies with Escherichia Coli bacteria, MBG-H 3 PO 4 showed better antibacterial behaviour than MBG-TEP. © 2014, Springer Science+Business Media New York.

Topics
  • pore
  • surface
  • amorphous
  • phase
  • scanning electron microscopy
  • glass
  • glass
  • powder X-ray diffraction
  • glass transition temperature
  • Calcium
  • crystallization
  • crystallinity
  • spectroscopy
  • bioactivity