Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Teresa Vieira, Mt

  • Google
  • 4
  • 5
  • 133

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayers6citations
  • 2013Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers40citations
  • 2012Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer27citations
  • 2011Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils60citations

Places of action

Chart of shared publication
Simoes, S.
4 / 40 shared
Sofia Ramos, As
4 / 4 shared
Viana, F.
4 / 22 shared
Vieira, Mf
4 / 42 shared
Kocak, M.
2 / 30 shared
Chart of publication period
2016
2013
2012
2011

Co-Authors (by relevance)

  • Simoes, S.
  • Sofia Ramos, As
  • Viana, F.
  • Vieira, Mf
  • Kocak, M.
OrganizationsLocationPeople

article

Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers

  • Simoes, S.
  • Sofia Ramos, As
  • Teresa Vieira, Mt
  • Viana, F.
  • Vieira, Mf
Abstract

This study investigated the interfacial structure of solid state diffusion bonding of TiNi to Ti6Al4V using reactive Ni/Ti multilayer thin films. The TiNi and Ti6Al4V surfaces were modified by sputtering, by deposition of alternated Ni and Ti nanolayers, to increase the diffusivity at the interface. Bonding experiments were performed at 750, 800 and 900 A degrees C at a pressure of 10 MPa with a dwell time of 60 min. The reaction zone was characterized by high-resolution scanning and transmission electron microscopy. Joints free from porosity and cracks were produced with Ni/Ti reactive multilayer thin films. Several phases formed at the interface, ensuring the bonding of these alloys. The reaction zone was constituted by columnar grains of Ti2Ni and AlNi2Ti, close to the Ti6Al4V base material, and by alternate layers of Ti2Ni and TiNi equiaxed grains. The grain size decreased from Ti6Al4V to TiNi base materials. Nanometric grains were observed in the layers closest to the TiNi base material.

Topics
  • Deposition
  • surface
  • grain
  • grain size
  • phase
  • experiment
  • thin film
  • reactive
  • crack
  • transmission electron microscopy
  • porosity
  • diffusivity