Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Batchelor, Warren

  • Google
  • 2
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Transparent maltitol- cellulose nanocrystal film for high performance barrier3citations
  • 2016Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability17citations

Places of action

Chart of shared publication
Cainglet, Hans Estrella
1 / 1 shared
Nasiri, Naghmeh
1 / 1 shared
Garnier, Gil
2 / 3 shared
Varanasi, Swambabu
1 / 1 shared
Husain, Fatema Abbas
1 / 1 shared
Raj, Praveena
1 / 2 shared
Li, Qing
1 / 7 shared
Chart of publication period
2024
2016

Co-Authors (by relevance)

  • Cainglet, Hans Estrella
  • Nasiri, Naghmeh
  • Garnier, Gil
  • Varanasi, Swambabu
  • Husain, Fatema Abbas
  • Raj, Praveena
  • Li, Qing
OrganizationsLocationPeople

article

Transparent maltitol- cellulose nanocrystal film for high performance barrier

  • Cainglet, Hans Estrella
  • Batchelor, Warren
  • Nasiri, Naghmeh
  • Garnier, Gil
Abstract

<jats:title>Abstract</jats:title><jats:p>The broad applications of cellulose nanocrystal (CNC) films are restricted by their low resistance against water and brittleness. In this study, high barrier transparent films composed of CNCs and maltitol, used as a bio-plasticizer (at up to 30% weight), were prepared by spray deposition. Addition of plasticizer increased the optical transmittance of the films. It also improved elongation at break and flexibility of the films, while reducing Young’s modulus and tensile strength. The barrier properties of CNC films plasticized with maltitol were significantly improved over CNC. In particular, films containing 30 wt.% maltitol showed a water vapor permeability of 3.67 × 10<jats:sup>–12</jats:sup> (g/Pa.s.m) and oxygen permeability of 4.75 (cm<jats:sup>3</jats:sup>.µm/m<jats:sup>2</jats:sup>.day.Pa) corresponding to 94% and 78% reductions over CNC films, respectively. This remarkable barrier improvement is attributed to a combination of decreased porosity and the interaction of hydroxy groups of maltitol and CNCs. This interaction led to a reduction of the free hydroxy groups available to interact with the water molecules diffusing in the nanocomposite films, as confirmed by dynamic vapor sorption measurements. This study presents maltitol as a green plasticizer significantly improving the CNC film properties and enabling new barrier applications.</jats:p>

Topics
  • Deposition
  • nanocomposite
  • impedance spectroscopy
  • Oxygen
  • strength
  • permeability
  • tensile strength
  • porosity
  • cellulose
  • sorption measurement