People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bałkowiec, Alicja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2016The Influence of the Melt-Pouring Temperature and Inoculant Content on the Macro and Microstructure of the IN713C Ni-Based Superalloycitations
- 2015Corrosion inhibition of K-55 carbon steel in diluted potassium chloride solution by polyacrylamidecitations
- 2014Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluidcitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid
Abstract
Corrosion behaviour of carbon steel (K-55) in fracturing fluid was studied with a rotation cylinder electrode, under static and rotation conditions by means of several electrochemical techniques which are as follows: open circuit potential (OCP) decay, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). The corrosion rate was determined by weight loss measurements. The electrode surface after a prefixed immersion time was characterised by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that carbon steel showed anodic dissolution behaviour that increased under rotating condition. The cathodic polarisation current density also increased with the electrode rotation due to the increased oxygen diffusion on the electrode surface. Two different oxide layers were formed: a dark, thin layer of magnetite tightly adhering to the electrode surface, characterised by localised corrosion spots, and a porous reddish layer of poorly adhering hematite (Fe2O3) and maghemite (γ-Fe2O3). Under higher rotation rate, the developed oxide layer was not so stable, owing to the shear stress induced between the solution and the specimen surface, enhancing the corrosion rate.