Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Raffaele-Esposito, Angelo

  • Google
  • 1
  • 5
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Surface modification of zirconia or lithium disilicate-reinforced glass ceramic by laser texturing to increase the adhesion of prosthetic surfaces to resin cements18citations

Places of action

Chart of shared publication
Henriques, Bruno
1 / 64 shared
Özcan, Mutlu
1 / 75 shared
Matias De Souza, Júlio César
1 / 75 shared
Carvalho, Oscar
1 / 17 shared
Silva, Filipe
1 / 19 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Henriques, Bruno
  • Özcan, Mutlu
  • Matias De Souza, Júlio César
  • Carvalho, Oscar
  • Silva, Filipe
OrganizationsLocationPeople

article

Surface modification of zirconia or lithium disilicate-reinforced glass ceramic by laser texturing to increase the adhesion of prosthetic surfaces to resin cements

  • Henriques, Bruno
  • Özcan, Mutlu
  • Raffaele-Esposito, Angelo
  • Matias De Souza, Júlio César
  • Carvalho, Oscar
  • Silva, Filipe
Abstract

<p>Objective: The purpose of this study was to perform an integrative review on laser texturing the inner surface of lithium disilicate-reinforced glass ceramic or zirconia to increase their bond strength to resin-matrix cements. Materials and method: A bibliographic review was performed on PubMed using the following search terms: “zirconia” OR “lithium disilicate” AND “laser” AND “surface” OR “roughness” AND “bond strength” AND “luting agent” OR “resin cement.” Studies published in English language until March 15, 2023, were selected regarding the purpose of this study. Results: A total of fifty-six studies were identified althoug thirteen studies were selected. The findings revealed that zirconia surfaces were significantly modified after laser irradiation resulting in macro-scale aligned retentive regions with depth values ranging from 50 to 120 µm. Average roughness values of laser-textured zirconia by Er,Cr:YSGG laser (~ 0.83 µm) were quite similar when compared to grit-blasted zirconia surfaces (~ 0.9 µm) although roughness increased up to 2.4 µm depending on the laser type and parameters. Lithium disilicate-reinforced glass ceramics textured with Er:YAG revealed an average roughness of around 3.5 µm while surfaces textured using Nd:YAG laser revealed an average roughness of 2.69 µm; that was quite similar to the roughness values recorded for etched surfaces (2.64 µm). The shear bond strength (SBS) values of zirconia surfaces textured on Nd:YVO<sub>4</sub> laser irradiation were slightly higher (~ 33.5 MPa) than those recorded for grit-blasted zirconia surfaces (28 MPa). Laser-textured zirconia surfaces on CO<sub>2</sub> laser revealed higher SBS values (18.1 ±0.8 MPa) than those (9.1 ± 0.56 MPa) recorded for untreated zirconia surfaces. On lithium disilicate-reinforced glass ceramics, higher SBS values to resin-matrix cements were recorded for specimens textured with a combination of fractional CO<sub>2</sub> laser irradiation and HF acid etching (~ 22–24 MPa) when compared with grit-blasted specimens (12.2 MPa). Another study revealed SBS values at around 27.5 MPa for Er:YAG-textured lithium disilicate-reinforced glass ceramics to resin-matrix cements. Conclusions: The laser irradiation at high power increases the roughness of the inner surface of lithium disilicate-reinforced glass ceramic or zirconia leading to an enhanced bond strength to resin-matrix cements. Thus, the laser type and irradiation parameters can be adjusted to enhance the macro- and micro-scale retention of zirconia and glass ceramic surfaces to resin-matrix cements. Clinical relevance: Alternative methods for surface modification of lithium disilicate-reinforced glass ceramic and zirconia surfaces have been assessed to provide proper morphological aspects for enhanced adhesion to resin-matrix cements. An increase in the bond strength of glass ceramics or zirconia to resin-matrix cements can improve the long-term performance of cemented prosthetic structures in the oral cavity.</p>

Topics
  • surface
  • glass
  • glass
  • strength
  • cement
  • etching
  • Lithium
  • ceramic
  • resin
  • aligned