Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gerald, John D. Fitz

  • Google
  • 2
  • 7
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Mechanical amorphization, flash heating, and frictional melting36citations
  • 2007OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China)52citations

Places of action

Chart of shared publication
Forsyth, Perry
1 / 1 shared
Cox, Stephen F.
1 / 1 shared
Shaddock, Daniel A.
1 / 1 shared
Hayward, Kathryn
1 / 2 shared
Malaspina, Nadia
1 / 3 shared
Scambelluri, Marco
1 / 1 shared
Hermann, Jörg
1 / 9 shared
Chart of publication period
2016
2007

Co-Authors (by relevance)

  • Forsyth, Perry
  • Cox, Stephen F.
  • Shaddock, Daniel A.
  • Hayward, Kathryn
  • Malaspina, Nadia
  • Scambelluri, Marco
  • Hermann, Jörg
OrganizationsLocationPeople

article

OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China)

  • Malaspina, Nadia
  • Scambelluri, Marco
  • Gerald, John D. Fitz
  • Hermann, Jörg
Abstract

<p>The partial breakdown of Ti-chondrodite and Ti-clinohumite during exhumation from ultra-high pressure to amphibolite facies conditions in garnet-pyroxenites from Dabie Shan (China) produces coronas of olivine coexisting with ilmenite blebs. Fourier transform infrared (FTIR) spectra of this newly formed olivine exhibit absorption bands in the hydroxyl-stretching region. Two intense peaks were observed at 3,564 and 3,394 cm<sup>-1</sup>, identical in energy to peaks in Ti-clinohumite. Transmission electron microscopy (TEM) of the same olivine domains revealed the presence of a complex (001) planar intergrowth. These interlayers have a 1.35 nm repeat distance, which is characteristic of clinohumite. Such interlayers are also enriched in Ti with respect to the adjacent olivine as shown by energy dispersive spectrometry. The combined evidence from FTIR spectroscopy and TEM indicates that OH is incorporated along Ti-clinohumite planar defects. This study provides evidence that the nominally anhydrous phase olivine may contain OH as a humite-type defect beyond the breakdown of the hydrous humite minerals and confirms earlier suggestions that Ti plays a key role in OH incorporation in mantle olivine. We suggest that olivine containing Ti-clinohumite defects is an important phase for water transport in subduction zones and for the storage of water in cold subcontinental mantle. However, these defects are unlikely to be stable in hotter parts of the oceanic mantle such as where basaltic magmas are generated.</p>

Topics
  • impedance spectroscopy
  • mineral
  • phase
  • transmission electron microscopy
  • defect
  • spectrometry