People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Delaye, Philippe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Towards two-photon-absorption-free hybrid silicon nitride waveguides reaching silicon Kerr nonlinearity
- 2020Conception and reproducibility study of efficient evanescent Raman converters based a nanofiber immersed in a liquidcitations
- 20063D photonic crystals based on epitaxial III-V semiconductor structures for non-linear optical interactionscitations
- 2003Characterization of photorefractive BCT:Rh crystals at 1.06µm by two wave mixing
- 2001Effect of rhodium doping on the photorefractive properties of BCT crystalscitations
- 2001Effect of rhodium doping on the photorefractive properties of BCT crystals at 850nmcitations
Places of action
Organizations | Location | People |
---|
article
Effect of rhodium doping on the photorefractive properties of BCT crystals at 850nm
Abstract
We present an experimental investigation of the photorefractive properties of rhodium doped barium calcium titanate crystals of the congruently melting composition Ba0.77Ca0.23TiO3. Considering the results previously obtained on this crystal in the visible region, it should be a good alternative to BaTiO3. Nevertheless, many applications use infrared light. Therefore we present here a study of rhodium doped BCT crystals at 850 nm. This wavelength is of special interest as it is in the spectral range of laser diodes. Rhodium doping is expected to enhance the sensitivity of the crystal in the infrared as it is the case for BaTiO3. We first noticed that BCT:Rh crystals are sensitive at this wavelength as expected. Furthermore, the photorefractive properties are interesting in term of photorefractive gain, with a gain as high as 3 cm-1 with ordinary polarization. This study has also put forward the fact that rhodium is not the only defect that participates in the photorefractive effect. Indeed, a large quantity of iron seems to be present in the BCT crystals and to participate in the photorefractive effect