Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ebn Touhami, Mohamed

  • Google
  • 1
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Optoelectronic characterization of CuInGa(S)<SUB>2</SUB> thin films grown by spray pyrolysis for photovoltaic application26citations

Places of action

Chart of shared publication
Mari, Bernabe
1 / 1 shared
Ullah, Hanif
1 / 2 shared
Hartiti, Bouchaib
1 / 18 shared
Santos, D. M. F.
1 / 8 shared
Bouich, Amal
1 / 24 shared
Ullah, Shafi
1 / 9 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Mari, Bernabe
  • Ullah, Hanif
  • Hartiti, Bouchaib
  • Santos, D. M. F.
  • Bouich, Amal
  • Ullah, Shafi
OrganizationsLocationPeople

article

Optoelectronic characterization of CuInGa(S)<SUB>2</SUB> thin films grown by spray pyrolysis for photovoltaic application

  • Mari, Bernabe
  • Ebn Touhami, Mohamed
  • Ullah, Hanif
  • Hartiti, Bouchaib
  • Santos, D. M. F.
  • Bouich, Amal
  • Ullah, Shafi
Abstract

Copper-indium gallium disulfide (CIGS) is a good absorber for photovoltaic application. Thin films of CIGS were prepared by spray pyrolysis on glass substrates in the ambient atmosphere. The films were characterized by different techniques, such as structural, morphological, optical and electrical properties of CIGS films were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect, respectively. After optimization, the deposited films structure, grain size, and crystallinity became more important with an increase of annealing time at 370 °C for 20 min. Transmission electron microscopy (TEM) analysis shows that the interface sheets are well crystallized and the inter planer distance are 0.25 nm, 0.28 nm, and 0.36 nm. The atomic force microscopy (AFM) observation shows that the grain size and roughness can be tolerated by optimizing the annealing time. The strong absorbance and low transmittance were observed for the prepared films with a suitable energy bandgap about 1.46 eV. The Hall effect measurement system examined that CIGS films exhibited optimal electrical properties, resistivity, carrier mobility, and carrier concentration which were determined to be 4.22 × 10<SUP>6</SUP> Ω cm, 6.18 × 10<SUP>2</SUP> cm<SUP>2</SUP> V<SUP>-1</SUP> S<SUP>-1</SUP> and 4.22 × 10<SUP>6</SUP> cm<SUP>-3</SUP>, respectively. The optoelectronic properties of CIGS material recommended being used for the photovoltaic application....

Topics
  • impedance spectroscopy
  • grain
  • resistivity
  • grain size
  • mobility
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • atomic force microscopy
  • glass
  • glass
  • transmission electron microscopy
  • copper
  • annealing
  • crystallinity
  • Gallium
  • Indium
  • spray pyrolysis