Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bartnicki, Jaroslaw

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Microstructure evolution of three‑roll skew‑rolling formed hollow axles with uniform wall thickness6citations

Places of action

Chart of shared publication
Bidare, Prveen
1 / 10 shared
Essa, Khamis
1 / 46 shared
Shu, Chang
1 / 2 shared
Shu, Xuedao
1 / 1 shared
Zhang, Song
1 / 4 shared
Abdel-Wahab, Dr Adel
1 / 3 shared
Pater, Zbigniew
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bidare, Prveen
  • Essa, Khamis
  • Shu, Chang
  • Shu, Xuedao
  • Zhang, Song
  • Abdel-Wahab, Dr Adel
  • Pater, Zbigniew
OrganizationsLocationPeople

article

Microstructure evolution of three‑roll skew‑rolling formed hollow axles with uniform wall thickness

  • Bidare, Prveen
  • Essa, Khamis
  • Shu, Chang
  • Shu, Xuedao
  • Zhang, Song
  • Abdel-Wahab, Dr Adel
  • Bartnicki, Jaroslaw
  • Pater, Zbigniew
Abstract

The uniform thickness hollow axle is one of the lightest weight axles in the high-speed rail industry. It can effectively reduce unsprung mass and further improve the train speed. Therefore, due to its importance and significance, it is crucial to research and develop the uniform thickness hollow axle. To understand the microstructural evolution during three-roll skew-rolling (TRSR) forming, 30CrMoA alloy steel was used in this study. A constitutive model of 30CrMoA was established by SIMUFACT FORMING finite element software and utilized to simulate the deformation, heat transfer, and microstructure coupling during TRSR. Via analyzing the influence of process parameters on the average grain size, the microstructural evolution of the forming part at each deformation stage is revealed. The result shows that the dynamic recrystallization of the rolled piece produces a fine and uniform grain structure during the forming process. The refinement level is enhanced with the increase of the radial compression; the grain size is gradually increased from the outer surface to the inner surface of the rolled piece. At a higher rolling temperature, it was found the initial grain size and final average grain size were larger compared to the lower temperature. By increasing the axial traction speed, not only can the rolling time be shortened, but also the appearance of coarse grains can be avoided. Therefore, the mechanical properties can be improved.

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • steel
  • forming
  • recrystallization