People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Garrard, Rebecca
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Laser powder bed fusion of a β titanium alloy: Microstructural development, post-processing, and mechanical behaviourcitations
- 2022In silico evaluation of additively manufactured 316L stainless steel stent in a patient-specific coronary arterycitations
- 2022A Convolutional Neural Network (CNN) classification to identify the presence of pores in powder bed fusion imagescitations
Places of action
Organizations | Location | People |
---|
article
A Convolutional Neural Network (CNN) classification to identify the presence of pores in powder bed fusion images
Abstract
This study aims to detect seeded porosity during metal additive manufacturing by employing convolutional neural networks (CNN). The study demonstrates the application of machine learning (ML) in in-process monitoring. Laser powder bed fusion (LPBF) is a selective laser melting technique used to build complex 3D parts. The current monitoring system in LPBF is inadequate to produce safety-critical parts due to the lack of automated processing of collected data. To assess the efficacy of applying ML to defect detection in LPBF by in-process images, a range of synthetic defects have been designed into cylindrical artefacts to mimic porosity occurring in different locations, shapes, and sizes. Empirical analysis has revealed the importance of accurate labelling strategies required for data-driven solutions. We formulated two labelling strategies based on the computer-aided design (CAD) file and X-ray computed tomography (XCT) scan data. A novel CNN was trained from scratch and optimised by selecting the best values of an extensive range of hyper-parameters by employing a Hyperband tuner. The model’s accuracy was 90% when trained using CAD-assisted labelling and 97% when using XCT-assisted labelling. The model successfully spotted pores as small as 0.2mm. Experiments revealed that balancing the data set improved the model’s precision from 89% to 97% and recall from 85% to 97% compared to training on an imbalanced data set. We firmly believe that the proposed model would significantly reduce post-processing costs and provide a better base model network for transfer learning of future ML models aimed at LPBF micro-defects detection.