Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garrard, Rebecca

  • Google
  • 3
  • 11
  • 60

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Laser powder bed fusion of a β titanium alloy: Microstructural development, post-processing, and mechanical behaviour12citations
  • 2022In silico evaluation of additively manufactured 316L stainless steel stent in a patient-specific coronary artery10citations
  • 2022A Convolutional Neural Network (CNN) classification to identify the presence of pores in powder bed fusion images38citations

Places of action

Chart of shared publication
Ibrahim, Peter
1 / 3 shared
Attallah, Moataz Moataz
2 / 96 shared
He, Ran
1 / 3 shared
Langi, Enzoh
1 / 6 shared
Vogt, Felix
1 / 2 shared
Silberschmidt, Vadim V.
1 / 524 shared
Zhao, Liguo
1 / 13 shared
Ansari, Muhammad Ayub
1 / 1 shared
Crampton, Andrew
1 / 2 shared
Attallah, Moataz
1 / 3 shared
Cai, Biao
1 / 13 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Ibrahim, Peter
  • Attallah, Moataz Moataz
  • He, Ran
  • Langi, Enzoh
  • Vogt, Felix
  • Silberschmidt, Vadim V.
  • Zhao, Liguo
  • Ansari, Muhammad Ayub
  • Crampton, Andrew
  • Attallah, Moataz
  • Cai, Biao
OrganizationsLocationPeople

article

A Convolutional Neural Network (CNN) classification to identify the presence of pores in powder bed fusion images

  • Ansari, Muhammad Ayub
  • Garrard, Rebecca
  • Crampton, Andrew
  • Attallah, Moataz
  • Cai, Biao
Abstract

This study aims to detect seeded porosity during metal additive manufacturing by employing convolutional neural networks (CNN). The study demonstrates the application of machine learning (ML) in in-process monitoring. Laser powder bed fusion (LPBF) is a selective laser melting technique used to build complex 3D parts. The current monitoring system in LPBF is inadequate to produce safety-critical parts due to the lack of automated processing of collected data. To assess the efficacy of applying ML to defect detection in LPBF by in-process images, a range of synthetic defects have been designed into cylindrical artefacts to mimic porosity occurring in different locations, shapes, and sizes. Empirical analysis has revealed the importance of accurate labelling strategies required for data-driven solutions. We formulated two labelling strategies based on the computer-aided design (CAD) file and X-ray computed tomography (XCT) scan data. A novel CNN was trained from scratch and optimised by selecting the best values of an extensive range of hyper-parameters by employing a Hyperband tuner. The model’s accuracy was 90% when trained using CAD-assisted labelling and 97% when using XCT-assisted labelling. The model successfully spotted pores as small as 0.2mm. Experiments revealed that balancing the data set improved the model’s precision from 89% to 97% and recall from 85% to 97% compared to training on an imbalanced data set. We firmly believe that the proposed model would significantly reduce post-processing costs and provide a better base model network for transfer learning of future ML models aimed at LPBF micro-defects detection.

Topics
  • impedance spectroscopy
  • pore
  • experiment
  • tomography
  • selective laser melting
  • porosity
  • machine learning
  • collision-induced dissociation