People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mølhave, Kristian S.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopycitations
- 2024Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopycitations
- 2024Operando Electron Microscopy and Impedance Analysis of Solid Oxide Electrolysis and Fuel Cellscitations
- 2021Development of high-temperature electrochemical TEM and its application on solid oxide electrolysis cells
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopycitations
- 2018Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by in Situ Liquid Cell Scanning Transmission Electron Microscopycitations
- 2017Direct bonding of ALD Al2O3 to silicon nitride thin filmscitations
- 2016Controlling nanowire growth through electric field-induced deformation of the catalyst dropletcitations
- 2016In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells
- 2016Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Methodcitations
- 2015Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meatcitations
- 2011Titanium tungsten coatings for bioelectrochemical applications
- 2010Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam millingcitations
- 2008Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxycitations
- 2003Soldering of Nanotubes onto Microelectrodescitations
- 2003Solid gold nanostructures fabricated by electron beam depositioncitations
- 2001Customizable nanotweezers for manipulation of free-standing nanostructurescitations
Places of action
Organizations | Location | People |
---|
article
Microheater Controlled Crystal Phase Engineering of Nanowires Using In Situ Transmission Electron Microscopy
Abstract
<jats:title>Abstract</jats:title><jats:p>Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au‐catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III‐V gas supply system controls the precursor flow and custom‐built micro electro‐mechanical system (MEMS) chips with monocrystalline Si‐cantilevers are used for temperature control, forming a micrometer‐scale metal–organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.</jats:p>