People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jun, Seong Chan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Reconfiguring the Electronic Structure of Heteroatom Doped Carbon Supported Bimetallic Oxide@Metal Sulfide Core–Shell Heterostructure via In Situ Nb Incorporation toward Extrinsic Pseudocapacitorcitations
- 2023A Simple Method to Produce an Aluminum Oxide-Passivated Tungsten Diselenide/n-Type Si Heterojunction Solar Cell with High Power Conversion Efficiencycitations
- 2023A Simple Method to Produce an Aluminum Oxide-Passivated Tungsten Diselenide/n-Type Si Heterojunction Solar Cell with High Power Conversion Efficiencycitations
- 2023Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitorcitations
- 2020Modulation of Magnetoresistance Polarity in BLG/SL-MoSe2 Heterostackscitations
- 2018Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imagingcitations
Places of action
Organizations | Location | People |
---|
article
Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor
Abstract
<jats:title>Abstract</jats:title><jats:p>Ultra‐high energy density battery‐type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub> core‐shell heterostructure constrained in the sulphur (S), nitrogen (N) co‐doped carbon (C) metal‐organic frameworks (MOFs) derived nanosheets (<jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>@N, SC) have been developed. The coordination bonding among Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>, and <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS nanoparticles at the interfaces and the <jats:italic>π</jats:italic>–<jats:italic>π</jats:italic> stacking interactions developed across <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub> and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom‐enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core‐shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The <jats:italic>α</jats:italic>‐/<jats:italic>γ</jats:italic>‐MnS@Co<jats:sub>x</jats:sub>S<jats:sub>y</jats:sub>@N, SC electrode exhibits an excellent specific capacity of 277 mA hg<jats:sup>−1</jats:sup> and cycling stability over 23 600 cycles. A quasi‐solid‐state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer‐by‐layer deposited multi‐walled carbon nanotube/Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>X</jats:sub> nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg<jats:sup>−1</jats:sup> (1.62 mWh cm<jats:sup>−3</jats:sup>) at a power of 933 W kg<jats:sup>−1</jats:sup> and 92% capacitance retention over 5000 cycles.</jats:p>