People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohedano, Marta
Universidad Complutense de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Functionalization of Plasma Electrolytic Oxidation/Sol–Gel Coatings on AZ31 with Organic Corrosion Inhibitorscitations
- 2024Screening of fluoride-free PEO coatings on cast Mg3Zn0.4Ca alloy for orthopaedic implantscitations
- 2024Degradation Rate Control Issues of PEO-Coated Wrought Mg0.5Zn0.2Ca Alloy
- 2022Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloycitations
- 2022Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: the influence of current and frequencycitations
- 2020Effect of Heat Treatment on the Corrosion Behavior of Mg-10Gd Alloy in 0.5% NaCl Solutioncitations
- 2020Calcium Doped Flash-PEO Coatings for Corrosion Protection of Mg Alloycitations
- 2019Degradation Behaviour of Mg0.6Ca and Mg0.6Ca2Ag Alloys with Bioactive Plasma Electrolytic Oxidation Coatingscitations
- 2019Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloycitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2018Corrosion behaviour of as-cast ZK40 with CaO and Y additionscitations
- 2017Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growthcitations
- 2017Characterization and corrosion behavior of binary Mg-Ga alloyscitations
- 2016PEO of rheocast A356 Al alloy:energy efficiency and corrosion propertiescitations
- 2016PEO of rheocast A356 Al alloycitations
- 2015Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle additioncitations
- 2014Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
article
PEO of rheocast A356 Al alloy
Abstract
<p>PEO coatings were developed under voltage-controlled mode on a rheocast A356 aluminum alloy without and with pretreatment by conventional anodizing in sulphuric acid. Microstructure and composition of uncoated and coated materials were studied using SEM, EDS and XRD. The anodic precursor oxide layer preserves the microstructure of the alloy because of the presence of secondary phases having a different behavior relative to the matrix during conventional anodizing. After PEO treatment, the coatings consisted of a mixture of α-Al<sub>2</sub>O<sub>3</sub>, γ-Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> and mullite (3Al<sub>2</sub>O<sub>3</sub>·2SiO<sub>2</sub>). The effect of pre-anodizing on energy efficiency was investigated revealing considerable energy savings with the precursor porous films, because of the faster establishment of the so-called ‘soft sparking’ regime that promotes faster coating growth rate. The electrochemical corrosion properties were evaluated for uncoated and coated materials using electrochemical techniques (potentiodynamic curves and electrochemical impedance spectroscopy). PEO coated materials showed remarkably reduced susceptibility to corrosion.</p>