Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Berg, Fenja

  • Google
  • 6
  • 29
  • 85

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Strain as a Global Factor in Stabilizing the Ferroelectric Properties of ZrO₂22citations
  • 2024Strain as a Global Factor in Stabilizing the Ferroelectric Properties of ZrO<sub>2</sub>22citations
  • 2023Strain as a global factor in stabilizing the ferroelectric properties of ZrO 222citations
  • 2023Dual‐Mode Operation of Epitaxial Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>: Ferroelectric and Filamentary‐Type Resistive Switching1citations
  • 2023Parameters for ferroelectric phase stabilization of sputtered undoped hafnium oxide thin films4citations
  • 2020Evolution of short-range order in chemically and physically grown thin film bilayer structures for electronic applications14citations

Places of action

Chart of shared publication
Kiguchi, Takanori
2 / 4 shared
Richter, Claudia
3 / 7 shared
Lomenzo, Patrick D.
2 / 9 shared
Mikolajick, Thomas
3 / 92 shared
Reinig, Peter
3 / 5 shared
Fancher, Chris M.
2 / 4 shared
Schenk, Tony
3 / 8 shared
Starschich, Sergej
3 / 3 shared
Xu, Bohan
3 / 7 shared
Schroeder, Uwe Paul
1 / 1 shared
Boettger, Ulrich
5 / 6 shared
Holsgrove, Kristina M.
2 / 13 shared
Kersch, Alfred
3 / 7 shared
Holsgrove, Kristina
1 / 3 shared
Lomenzo, Patrick
1 / 1 shared
Schroeder, Uwe
2 / 27 shared
Goß, Kalle
1 / 2 shared
Dittmann, Regina
1 / 40 shared
Knabe, Judith
1 / 1 shared
Lübben, Jan
1 / 2 shared
Böttger, Ulrich
1 / 2 shared
Dippel, Ann-Christin
1 / 29 shared
Hoffmann-Eifert, Susanne
1 / 7 shared
Zimmermann, Martin V.
1 / 9 shared
Schneller, Theodor
1 / 4 shared
Klemeyer, Lars
1 / 2 shared
Hardtdegen, Alexander
1 / 2 shared
Aussen, Stephan
1 / 2 shared
Gutowski, Olof
1 / 17 shared
Chart of publication period
2024
2023
2020

Co-Authors (by relevance)

  • Kiguchi, Takanori
  • Richter, Claudia
  • Lomenzo, Patrick D.
  • Mikolajick, Thomas
  • Reinig, Peter
  • Fancher, Chris M.
  • Schenk, Tony
  • Starschich, Sergej
  • Xu, Bohan
  • Schroeder, Uwe Paul
  • Boettger, Ulrich
  • Holsgrove, Kristina M.
  • Kersch, Alfred
  • Holsgrove, Kristina
  • Lomenzo, Patrick
  • Schroeder, Uwe
  • Goß, Kalle
  • Dittmann, Regina
  • Knabe, Judith
  • Lübben, Jan
  • Böttger, Ulrich
  • Dippel, Ann-Christin
  • Hoffmann-Eifert, Susanne
  • Zimmermann, Martin V.
  • Schneller, Theodor
  • Klemeyer, Lars
  • Hardtdegen, Alexander
  • Aussen, Stephan
  • Gutowski, Olof
OrganizationsLocationPeople

article

Dual‐Mode Operation of Epitaxial Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>: Ferroelectric and Filamentary‐Type Resistive Switching

  • Goß, Kalle
  • Dittmann, Regina
  • Knabe, Judith
  • Berg, Fenja
  • Boettger, Ulrich
Abstract

<jats:p>Since the discovery of its ferroelectricity, hafnium oxide is widely used for applications in ferroelectric field‐effect transistors and ferroelectric tunnel junctions.is especially favored for its robust ferroelectricity and high remanent polarization at low thicknesses. In addition,is well established as amorphous or crystalline oxide layer in resistive switching devices. Herein, ferroelectric switching is found coexisting with high on/off ratio resistive switching in sub‐10 nm epitaxial . The resistive switching shows typical characteristics of a filamentary‐type valence change memory (VCM), clearly contradicting the polarization charges as the origin of different resistance states. In contrast to previous observations, no electroforming step is required to initiate VCM switching. Thebottom electrode enables a RESET to the virgin state, allowing subsequent ferroelectric hysteresis measurements. It is possible to change between both switching schemes repeatedly without impacting the ferroelectric performance. This indicates that ferroelectric switching and oxygen vacancy movement do not interfere with each other, and both switching phenomena can exist independently. This finding opens up ways to unite the different strengths of both switching mechanisms in the same stack. It becomes possible to assign the two operating principles to artificial neural network training and inference according to their respective advantages.</jats:p>

Topics
  • impedance spectroscopy
  • amorphous
  • Oxygen
  • strength
  • hafnium
  • vacancy
  • hafnium oxide