People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Korneychuk, Svetlana
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Local Hydrogen Concentration and Distribution in Pd Nanoparticles: An In Situ STEM‐EELS Approach
- 2021Single‐Shot Fabrication of Semiconducting–Superconducting Nanowire Devicescitations
- 2020Shadow-wall lithography of ballistic superconductor-semiconductor quantum devicescitations
- 2018Measurement of the indirect band gap of diamond with EELS in STEM
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2017On the Origin of Diamond Plates Deposited at Low Temperaturecitations
- 2017Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission propertiescitations
- 2016The effect of molecular structure of organic compound on the direct high-pressure synthesis of boron-doped nanodiamondcitations
Places of action
Organizations | Location | People |
---|
article
The effect of molecular structure of organic compound on the direct high-pressure synthesis of boron-doped nanodiamond
Abstract
volution of crystalline phases with temperature has been studied in materials produced by high-pressure high-temperature treatment of 9-borabicyclo[3.3.1]nonane dimer (9BBN), triphenylborane and trimesitylborane. The boron-doped diamond nanoparticles with a size below 10 nm were obtained at 89 GPa and temperatures 9701250 °C from 9BBN only. Bridged structure and the presence of boron atom in the carbon cycle of 9BBN were revealed to be a key point for the direct synthesis of doped diamond nanocrystals. The diffusional transformation of the disordered carbon phase is suggested to be the main mechanism of the nanodiamond formation from 9BBN in the temperature range of 9701400 °C. Aqueous suspensions of primary boron-doped diamond nanocrystals were prepared upon removal of non-diamond phases that opens wide opportunities for application of this new nanomaterial in electronics and biotechnologies.