People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Garbacz, Halina
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024A novel approach to enhance mechanical properties of Ti substrates for biomedical applicationscitations
- 2024Albumin suppresses oxidation of Ti-Nb alloy in the simulated inflammatory environment
- 2023The influence of microstructure and texture on the hardening by annealing effect in cold-rolled titaniumcitations
- 2022Surface Properties and Mechanical Performance of Ti-Based Dental Materials: Comparative Effect of Valve Alloying Elements and Structural Defectscitations
- 2020High-strength ultrafine-grained titanium 99.99 manufactured by large strain plastic workingcitations
- 2020Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rollingcitations
- 2020Effect of laser functionalization of titanium on bioactivity and biological responsecitations
- 2016Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia processcitations
- 2014Anodic polarization of nanocrystalline titaniumcitations
- 2014Chemical modification of nanocrystalline titanium surface for biological applications
- 2013Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammoniacitations
- 2013Analysis of two catalytic systems PtRhPd-PdAu and PtRh-PdAu after long-term exploitation
- 2012High cycle fatigue strength of hydrostatically extruded nanocrystalline CP titanium
- 2011Microstructure and mechanical properties of a Pt–Rh alloy produced by powder metallurgy and subjected to plastic workingcitations
- 2011Effect of laser treatment on the surface of copper alloyscitations
- 2010Fatigue properties of nanocrystalline titanium
- 2009Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitridingcitations
- 2007Ti - Al intermetallic layers produced on titanium alloy by duplex method
- 2006Effect of the Al<inf>2</inf>O<inf>3</inf> + Ni-Al multilayer on the mechanical properties of Inconel 600 alloycitations
- 2006Effect of surface treatment on the microstructure of TA6V
- 2006The influence of hydrostatic extrusion on the microstructure of 6082 aluminium alloy
- 2006Structure and properties of nanomaterials produced by severe plastic deformation
- 2006Influence of severe plastic deformation on the PLC effect and mechanical properties in Al 5XXX alloy
- 2005Structure and properties of Ti-Al intel-metallic layers produced on titanium alloys by a duplex treatment
- 2005Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methodscitations
- 2005Grain refinement in aluminium and the aluminium Al-Cu-Mg-Mn alloy by hydrostatic extrusion
- 2005Microstructure and mechanical properties of nickel deformed by hydrostatic extrusion
- 2005Hydrostatic extrusion and nanostructure formation in an aluminium alloycitations
- 2003Microstructural changes during oxidation of titanium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methods
Abstract
<p>Mechanical properties and TEM microstructure studies have been carried out of nanocrystalline titanium, Ti10Nb10Ta and Ti10Nb obtained by various technological routes, including: powder metallurgy (ball milling and hot pressing), Equal Channel Angular Pressing (ECAP), hydroextrusion (HE) and high pressure torsion (HPT). The HE processed material in the form of 20 mm rods was extruded at a strain rate of 2.5 × 10 <sup>2</sup> s <sup>-1</sup> to a diameter of 3 mm, which corresponds to the true strain of 3.8. Resulting Yield Strength (YS) at the crystal size below 80 nm exceeded 1000 MPa, i.e. attained a value of 3 times more than the initial material. Equal-Channel Angular Pressing (ECAP) at 723 K was applied to produce nanostructured titanium. Grain refinement was observed already after one pass (considerable number of grains with d < 100 nm was noted). It was accompanied by a growth of strength and slight decrease in the elongation. ECAP processing up to 4 passes resulted in further slight growth of strength and further slight loss of elongation. The titanium powder prepared by ball milling in a high energy mill decreased its crystal size down to 10 nm and reached microhardness HV <sub>20</sub> = 1000. The additions of Nb and Ta resulted in a similar grain refinement but lower hardness. Uniaxial hot pressing at 650°C, followed by vacuum annealing resulted in similar microhardness as for powders. TEM studies performed using quantitative metallography allowed to estimate mean grain size at 150 nm. HPT technique at the pressure of 5 GPa resulted in finest grain size as compared to other preparation techniques leading to nanoscale grain refinement in Ti samples. The mean crystal size was estimated at about 30 nm. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p>