Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jensen, Knud

  • Google
  • 4
  • 26
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016Construction of insulin 18-mer nanoassemblies driven by coordination to Iron(II) and Zinc(II) ions at distinct sites12citations
  • 2016Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins38citations
  • 2015Expression, receptor binding, and biophysical characterization of guinea pig insulin desB302citations
  • 2013Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation11citations

Places of action

Chart of shared publication
Munch, Henrik Kofoed
1 / 1 shared
Arleth, Lise
3 / 15 shared
Nygård, Jesper
1 / 7 shared
Christensen, Niels Johan
2 / 3 shared
Zhang, Jingdong
1 / 8 shared
Engelbrekt, Christian
1 / 8 shared
Thulstrup, Peter Waaben
2 / 5 shared
Porsgaard, Trine
1 / 1 shared
Østergaard, Mads
1 / 1 shared
Hoeg-Jensen, Thomas
1 / 1 shared
Kirkensgaard, Jacob, J. K.
1 / 11 shared
Sørensen, Kasper Kildegaard
1 / 1 shared
Tidemand Johansen, Nicolai
1 / 4 shared
Larsen, Andreas Haahr
1 / 8 shared
Midtgaard, Søren Roi
1 / 2 shared
Martel, Anne
1 / 12 shared
Engholm, Ebbe
1 / 1 shared
Johansson, Eva
1 / 8 shared
Hubálek, Frantisek
1 / 1 shared
Kjeldsen, Thomas B.
1 / 1 shared
Vinther, Tine N.
1 / 1 shared
Hansen, Thomas
1 / 13 shared
Strauss, Holger M.
1 / 1 shared
Streicher, Werner
1 / 1 shared
Nygaard, Jesper
1 / 2 shared
Malik, Leila
1 / 1 shared
Chart of publication period
2016
2015
2013

Co-Authors (by relevance)

  • Munch, Henrik Kofoed
  • Arleth, Lise
  • Nygård, Jesper
  • Christensen, Niels Johan
  • Zhang, Jingdong
  • Engelbrekt, Christian
  • Thulstrup, Peter Waaben
  • Porsgaard, Trine
  • Østergaard, Mads
  • Hoeg-Jensen, Thomas
  • Kirkensgaard, Jacob, J. K.
  • Sørensen, Kasper Kildegaard
  • Tidemand Johansen, Nicolai
  • Larsen, Andreas Haahr
  • Midtgaard, Søren Roi
  • Martel, Anne
  • Engholm, Ebbe
  • Johansson, Eva
  • Hubálek, Frantisek
  • Kjeldsen, Thomas B.
  • Vinther, Tine N.
  • Hansen, Thomas
  • Strauss, Holger M.
  • Streicher, Werner
  • Nygaard, Jesper
  • Malik, Leila
OrganizationsLocationPeople

article

Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

  • Arleth, Lise
  • Christensen, Niels Johan
  • Jensen, Knud
  • Thulstrup, Peter Waaben
  • Streicher, Werner
  • Nygaard, Jesper
  • Malik, Leila
Abstract

α-Helical coiled coil structures, which are noncovalently associated heptad repeat peptide sequences, are ubiquitous in nature. Similar amphipathic repeat sequences have also been found in helix-containing proteins and have played a central role in de novo design of proteins. In addition, they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical ultracentrifugation (AUC), which was correlated with molecular dynamics simulations. Our results show that even minor sequence changes have an effect on the folding topology and the self-assembly and that these differences can be observed by a combination of AUC, SAXS, and circular dichroism spectroscopy. A small difference in these methods was observed, as SAXS for one peptide and revealed the presence of a population of longer aggregates, which was not observed by AUC.

Topics
  • simulation
  • molecular dynamics
  • small angle x-ray scattering
  • self-assembly
  • circular dichroism spectroscopy