People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poikelispää, Minna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Hydrolytic stability of polyurethane/polyhydroxyurethane hybrid adhesivescitations
- 2021Low-temperature (-10 °C) curing of Portland cement paste – synergetic effects of 1 chloride-free antifreeze admixture C-S-H seeds, and room-temperature pre-curingcitations
- 2021Hydrolytic stability of polyurethane/polyhydroxyurethane hybrid adhesivescitations
- 2018Improved electromechanical response in acrylic rubber by different carbon-based fillerscitations
- 2017Vegetable fillers for electric stimuli responsive elastomerscitations
- 2016Improvement of actuation performance of dielectric elastomers by barium titanate and carbon black fillerscitations
- 2016Evaluation of mechanical and dynamic mechanical properties of multiwalled carbon nanotube-based ethylene–propylene copolymer composites mixed by masterbatch dilutioncitations
- 2014Stretching of solution processed carbon nanotube and graphene nanocomposite films on rubber substratescitations
Places of action
Organizations | Location | People |
---|
article
Improved electromechanical response in acrylic rubber by different carbon-based fillers
Abstract
Dielectric elastomers are materials often utilized for the fabrication of electroactive actuators. Acrylic rubber (ACM) is very widely used in dielectric elastomer actuators (DEAs). However, its overall good performance is limited by the high operating electric field required. In the present work, we compare the effect of different types of conventionally used carbon black (CB) as well as other carbon-based fillers on the dielectric and actuation properties of ACM in order to show that performance of DEAs can be improved by the development of ACM composites. Indeed, addition of CB, carbon nanotubes (CNTs), and synthetic graphite leads to an increase in the relative dielectric permittivity of elastomeric material. Moreover, incorporation of nanodiamonds results in reduction of dielectric losses. Finally, actuation stress is remarkably improved by CNTs and different grades of CB. ; Peer reviewed