People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lis, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2020Surface Modification of Luminescent LnIII Fluoride Core–Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and in Vitro Hemocompatibility Studiescitations
- 2019Synthesis of highly luminescent nanocomposite LaF3:Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emissioncitations
- 2016Luminescent cellulose fibers modified with cerium fluoride doped with terbium particlescitations
- 2016Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO<inf>4</inf>:Eu<sup>3+</sup>5%@SiO<inf>2</inf>@NH<inf>2</inf>citations
- 2015Synthesis, structural and spectroscopic studies on GdBO<inf>3</inf>:Yb<sup>3+</sup>/Tb<sup>3+</sup>@SiO<inf>2</inf> core-shell nanostructurescitations
- 2015Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluoridescitations
- 2014Revised crystal structure and luminescent properties of gadolinium oxyfluoride Gd<inf>4</inf>O<inf>3</inf>F<inf>6</inf> doped with Eu<sup>3+</sup> ionscitations
- 2013New complexes of cobalt(II) ions with pyridinecarboxylic acid N-oxides and 4,4′-bypcitations
- 2013Structural, spectroscopic and cytotoxicity studies of TbF <inf>3</inf>@CeF<inf>3</inf> and TbF<inf>3</inf>@CeF<inf>3</inf>@SiO<inf>2</inf> nanocrystalscitations
- 2013Hydrothermal synthesis and structural and spectroscopic properties of the new triclinic form of GdBO<inf>3</inf>:Eu<sup>3+</sup> nanocrystalscitations
- 2012Luminescent cellulose fibers activated by Eu <sup>3+</sup>-doped nanoparticlescitations
- 2012Tunable luminescence of Sr <inf>2</inf>CeO <inf>4</inf>:M <sup>2+</sup> (M = Ca, Mg, Ba, Zn) and Sr <inf>2</inf>CeO <inf>4</inf>:Ln <sup>3+</sup> (Ln = Eu, Dy, Tm) nanophosphorscitations
- 2012Synthesis, complexation studies and structural characterization of d and f metal ion complexes with 4-chloroquinaldinic acid N-oxidecitations
- 2012Magnetic and luminescent hybrid nanomaterial based on Fe <inf>3</inf>O <inf>4</inf> nanocrystals and GdPO <inf>4</inf>:Eu <sup>3+</sup> nanoneedlescitations
- 2011Synthesis, spectroscopic and structural properties of uranyl complexes based on bipyridine N-oxide ligandscitations
- 2011Structural and spectroscopic properties of LaOF:Eu<sup>3+</sup> nanocrystals prepared by the sol-gel Pechini methodcitations
- 2002Luminescence studies of Eu(III) mixed ligand complexescitations
Places of action
Organizations | Location | People |
---|
article
Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles
Abstract
<p>This article describes UV-active cellulose fibers obtained by dry-wet spinning method. The fibers have been formed from an 8% by weight cellulose solution in N-methylomorpholine-N-oxide (NMMO) modified by Ce<sub>0.85</sub>Tb<sub>0.15</sub>F<sub>3</sub> nanocrystals. The modifier was synthesized by wet chemical method, coprecipitation approach. The host was chosen as the most promising one for the green emitting Tb<sup>3+</sup> ions. Photoluminescent nanoparticles were introduced into the polymer matrix during the process of dissolving cellulose in NMMO. The modifier occurred in the form of white paste, consisting of luminescent nanoparticles dispersed in glycerine. The dependencies between the concentration of nanocrystals, emission intensity, and excitation energy of the final cellulosic luminescent products were examined by photoluminescence spectroscopy. The size and structure of Ce<sub>0.85</sub>Tb<sub>0.15</sub>F<sub>3</sub> nanocrystals were studied by X-ray powder diffraction analysis. The dispersion of the nanoparticles in the polymer matrix was evaluated using scanning electron microscopy and transmission electron microscopy. The real content of luminescent nanocrystals in the fibers was estimated as well. The influence of different concentrations of modifier particles (in the range from 0.5 to 5% by weight) on the mechanical properties of the fibers was determined.</p>