People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smulders, Maarten M. J.
Wageningen University & Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanescitations
- 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanescitations
- 2023Internal hydrogen bonding of imines to control and enhance the dynamic mechanical properties of covalent adaptable networkscitations
- 2023Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistancecitations
- 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networkscitations
- 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networkscitations
- 2022Self-healing antifouling polymer brushescitations
- 2022Diblock and random antifouling bioactive polymer brushes on gold surfaces by visible-light-induced polymerization (SI-PET-RAFT) in watercitations
- 2022Self-healing antifouling polymer brushes : Effects of degree of fluorinationcitations
- 2021Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatingscitations
- 2021The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networkscitations
- 2020PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routescitations
Places of action
Organizations | Location | People |
---|
article
Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance
Abstract
Covalent adaptable networks (CANs) can replace classical thermosets, as their unique dynamic covalent bonds enable recyclable crosslinked polymers. Their creep susceptibility, however, hampers their application. Herein, an efficient strategy to enhance creep resistance of CANs via metal coordination to dynamic covalentimines is demonstrated. Crucially, the coordination bonds not only form additional crosslinks, but also affect the imine exchange. This dual effect results in enhanced glass transition temperature (Tg), elasticmodulus (G′) and creep resistance. The robustness of metal coordination is demonstrated by varying metal ion, counter anion, and coordinating imine ligand. All variations in metal or anion significantly enhance the material properties. The Tg and G′ of the CANs are correlated to the coordination bond strength, offering a tunable handle by which choice of metal can steer material properties. Additionally, large differences in Tg and G′ are observed for materials with different anions, which are mostly linked to the anion size. This serves as a reminder that for coordination chemistry in the bulk, not onlythe metal ion is to be considered, but also the accompanying anion. Finally, the reinforcing effect of metal coordination is proved insensitive to the metal–ligand ratio, emphasizing the robustness of the applied method.