Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smulders, Maarten M. J.

  • Google
  • 12
  • 23
  • 247

Wageningen University & Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes8citations
  • 2023Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes8citations
  • 2023Internal hydrogen bonding of imines to control and enhance the dynamic mechanical properties of covalent adaptable networks9citations
  • 2023Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance15citations
  • 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networks17citations
  • 2022Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networks17citations
  • 2022Self-healing antifouling polymer brushes13citations
  • 2022Diblock and random antifouling bioactive polymer brushes on gold surfaces by visible-light-induced polymerization (SI-PET-RAFT) in water45citations
  • 2022Self-healing antifouling polymer brushes : Effects of degree of fluorination13citations
  • 2021Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings7citations
  • 2021The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networks59citations
  • 2020PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes36citations

Places of action

Chart of shared publication
Hurne, Simon Van
1 / 1 shared
Kisters, Marijn
2 / 2 shared
Van Hurne, Simon
1 / 1 shared
Zuilhof, Han
6 / 16 shared
Schoustra, Sybren K.
4 / 4 shared
Asadi, Vahid
1 / 5 shared
De Heer Kloots, Martijn
1 / 1 shared
Doorn, Daphne Van
1 / 1 shared
Dijksman, Joshua A.
2 / 14 shared
Posthuma, Joris
2 / 2 shared
De Heer Kloots, Martijn H. P.
1 / 1 shared
Van Doorn, Daphne
1 / 1 shared
Dam, Annemieke Van
1 / 1 shared
Teunissen, Lucas
1 / 1 shared
Fritz, Pina
1 / 1 shared
Lagen, B. Van
1 / 2 shared
Kuzmyn, Andriy R.
2 / 2 shared
Van Dam, Annemieke
1 / 1 shared
Scheres, Luc
2 / 4 shared
Roeven, Esther
2 / 3 shared
Schoustra, S. K.
1 / 1 shared
Groeneveld, T.
1 / 1 shared
Baggerman, Jacob
1 / 2 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Hurne, Simon Van
  • Kisters, Marijn
  • Van Hurne, Simon
  • Zuilhof, Han
  • Schoustra, Sybren K.
  • Asadi, Vahid
  • De Heer Kloots, Martijn
  • Doorn, Daphne Van
  • Dijksman, Joshua A.
  • Posthuma, Joris
  • De Heer Kloots, Martijn H. P.
  • Van Doorn, Daphne
  • Dam, Annemieke Van
  • Teunissen, Lucas
  • Fritz, Pina
  • Lagen, B. Van
  • Kuzmyn, Andriy R.
  • Van Dam, Annemieke
  • Scheres, Luc
  • Roeven, Esther
  • Schoustra, S. K.
  • Groeneveld, T.
  • Baggerman, Jacob
OrganizationsLocationPeople

article

Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance

  • Schoustra, Sybren K.
  • Smulders, Maarten M. J.
Abstract

Covalent adaptable networks (CANs) can replace classical thermosets, as their unique dynamic covalent bonds enable recyclable crosslinked polymers. Their creep susceptibility, however, hampers their application. Herein, an efficient strategy to enhance creep resistance of CANs via metal coordination to dynamic covalentimines is demonstrated. Crucially, the coordination bonds not only form additional crosslinks, but also affect the imine exchange. This dual effect results in enhanced glass transition temperature (Tg), elasticmodulus (G′) and creep resistance. The robustness of metal coordination is demonstrated by varying metal ion, counter anion, and coordinating imine ligand. All variations in metal or anion significantly enhance the material properties. The Tg and G′ of the CANs are correlated to the coordination bond strength, offering a tunable handle by which choice of metal can steer material properties. Additionally, large differences in Tg and G′ are observed for materials with different anions, which are mostly linked to the anion size. This serves as a reminder that for coordination chemistry in the bulk, not onlythe metal ion is to be considered, but also the accompanying anion. Finally, the reinforcing effect of metal coordination is proved insensitive to the metal–ligand ratio, emphasizing the robustness of the applied method.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • strength
  • thermogravimetry
  • glass transition temperature
  • thermoset
  • susceptibility
  • creep