Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dückmann, Oliver

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Antimicrobial Brushes on Titanium via “Grafting to” Using Phosphonic Acid/Pyridinium Containing Block Copolymers6citations

Places of action

Chart of shared publication
Kuckling, Dirk
1 / 1 shared
Simon, Frank
1 / 15 shared
Methling, Rafael
1 / 1 shared
Wolf-Brandstetter, Cornelia
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kuckling, Dirk
  • Simon, Frank
  • Methling, Rafael
  • Wolf-Brandstetter, Cornelia
OrganizationsLocationPeople

article

Antimicrobial Brushes on Titanium via “Grafting to” Using Phosphonic Acid/Pyridinium Containing Block Copolymers

  • Kuckling, Dirk
  • Simon, Frank
  • Methling, Rafael
  • Dückmann, Oliver
  • Wolf-Brandstetter, Cornelia
Abstract

<p>Coating medical implants with antibacterial polymers may prevent postoperative infections which are a common issue for conventional titanium implants and can even lead to implant failure. Easily applicable diblock copolymers are presented that form polymer brushes via “grafting to” mechanism on titanium and equip the modified material with antibacterial properties. The polymers carry quaternized pyridinium units to combat bacteria and phosphonic acid groups which allow the linear chains to be anchored to metal surfaces in a convenient coating process. The polymers are synthesized via reversible-addition-fragmentation-chain-transfer (RAFT) polymerization and postmodifications and are characterized using NMR spectroscopy and SEC. Low grafting densities are a major drawback of the “grafting to” approach compared to “grafting from”. Thus, the number of phosphonic acid groups in the anchor block are varied to investigate and optimize the surface binding. Modified titanium surfaces are examined regarding their composition, wetting behavior, streaming potential, and coating stability. Evaluation of the antimicrobial properties revealed reduced bacterial adhesion and biofilm formation for certain polymers, albeit the cell biocompatibility against human gingival fibroblasts is also impaired. The presented findings show the potential of easy-to-apply polymer coatings and aid in designing next-generation implant surface modifications.</p>

Topics
  • impedance spectroscopy
  • surface
  • titanium
  • copolymer
  • size-exclusion chromatography
  • Nuclear Magnetic Resonance spectroscopy
  • block copolymer
  • biocompatibility