Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Buzolin, Rh

  • Google
  • 1
  • 8
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Thixomolded AZ91D and MRI153M magnesium alloys and their enhanced corrosion resistance5citations

Places of action

Chart of shared publication
Mendis, Cl
1 / 8 shared
Volovitch, P.
1 / 5 shared
Lohmüller, A.
1 / 3 shared
Maltseva, A.
1 / 2 shared
Kainer, Ku
1 / 341 shared
Lamaka, S.
1 / 13 shared
Hort, N.
1 / 266 shared
Blawert, C.
1 / 172 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Mendis, Cl
  • Volovitch, P.
  • Lohmüller, A.
  • Maltseva, A.
  • Kainer, Ku
  • Lamaka, S.
  • Hort, N.
  • Blawert, C.
OrganizationsLocationPeople

article

Thixomolded AZ91D and MRI153M magnesium alloys and their enhanced corrosion resistance

  • Buzolin, Rh
  • Mendis, Cl
  • Volovitch, P.
  • Lohmüller, A.
  • Maltseva, A.
  • Kainer, Ku
  • Lamaka, S.
  • Hort, N.
  • Blawert, C.
Abstract

© 2020 The Authors. Materials and Corrosion published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim AZ91D and MRI153M alloys were produced by thixomolding. Their corrosion resistance is significantly higher than that of similar materials produced by ingot or die-casting. A corrosion rate smaller than 0.2 mm/year in 5 wt% NaCl solution is measured for the thixomolded AZ91D alloy. The corrosion behaviour was evaluated using immersion tests, electrochemical impedance spectroscopy, hydrogen evolution, glow discharge optical emission spectroscopy, and atomic emission spectroelectrochemistry. A bimodal microstructure is observed for both alloys, with the presence of coarse primary α-Mg grains, fine secondary α-Mg grains, β-phase, and other phases with a minor volume fraction. The amount of coarse primary α-Mg is significantly higher for the AZ91D compared with the MRI153M. The network of β-phase around the fine secondary α-Mg grains is better established in the thixomolded AZ91D alloy. A combination of several factors such as the ratio of primary to secondary α-Mg grains, localised corrosion or barrier effect due to other phases, as well as regions of preferential dissolution of the α-Mg due to chemical segregation, are thought to be responsible for the high corrosion resistance exhibited by the thixomolded AZ91D and MRI153M. ; German Ministry of Education and Research; Christian Doppler Society

Topics
  • impedance spectroscopy
  • grain
  • corrosion
  • phase
  • Magnesium
  • magnesium alloy
  • Magnesium
  • Hydrogen
  • casting