Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huertaflores, Ali M.

  • Google
  • 1
  • 10
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Surface plasmon resonance excited electron induction greatly extends H<sub>2</sub> evolution and pollutant degradation activity of g‐C<sub>3</sub>N<sub>4</sub> under visible light irradiation39citations

Places of action

Chart of shared publication
Ali, Sharafat
1 / 17 shared
Shaheen, Shabana
1 / 2 shared
Ateeq, Muhammad
1 / 2 shared
Khan, Imran
1 / 18 shared
Khan, Waliullah
1 / 1 shared
Hussain, Zahid
1 / 6 shared
Ullah, Mohib
1 / 3 shared
Zada, Amir
1 / 8 shared
Shah, Muhammad Ishaq Ali
1 / 2 shared
Ali, Wajid
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ali, Sharafat
  • Shaheen, Shabana
  • Ateeq, Muhammad
  • Khan, Imran
  • Khan, Waliullah
  • Hussain, Zahid
  • Ullah, Mohib
  • Zada, Amir
  • Shah, Muhammad Ishaq Ali
  • Ali, Wajid
OrganizationsLocationPeople

article

Surface plasmon resonance excited electron induction greatly extends H<sub>2</sub> evolution and pollutant degradation activity of g‐C<sub>3</sub>N<sub>4</sub> under visible light irradiation

  • Huertaflores, Ali M.
  • Ali, Sharafat
  • Shaheen, Shabana
  • Ateeq, Muhammad
  • Khan, Imran
  • Khan, Waliullah
  • Hussain, Zahid
  • Ullah, Mohib
  • Zada, Amir
  • Shah, Muhammad Ishaq Ali
  • Ali, Wajid
Abstract

<jats:title>Abstract</jats:title><jats:p>Energy crises and environmental pollution have sparked tremendous research work to handle their impacts. Herein, we fabricated Au/g‐C<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub> nanocomposites to produce H<jats:sub>2</jats:sub> and degrade 2,4‐dichlorophenol (2,4‐DCP) under visible light and at different wavelengths. Interestingly, the optimized photocatalyst generated 114 μmol H<jats:sub>2</jats:sub> and degraded 25% 2,4‐DCP in 1 hr as compared with 10 μmol H<jats:sub>2</jats:sub> generation and 8% 2,4‐DCP degradation by pure g‐C<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>. This improvement is credited to the extended light absorption and improved charge induction from gold to g‐C<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub> even at 590 nm as confirmed from photoluminescence, surface photovoltage, and photoelectrochemical study of the samples. Moreover, the surface catalytic property of g‐C<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub> was much improved after loading a proper amount of gold nanoparticles. We hope that this technique to photosensitize semiconductors with noble metal nanoparticles may provide a feasible way to construct surface plasmon resonance‐assisted photocatalysts to cope with energy crises and environmental pollution simultaneously.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • photoluminescence
  • semiconductor
  • gold