People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vacher, Morgane
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Sensitivity of K beta mainline X-ray emission to structural dynamics in iron photosensitizercitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering.citations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering.citations
- 2020Origin of core-to-core x-ray emission spectroscopy sensitivity to structural dynamicscitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scatteringcitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scatteringcitations
- 2020Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scatteringcitations
- 2020Origin of core-to-core x-ray emission spectroscopy sensitivity to structural dynamics.citations
- 2019Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions.citations
Places of action
Organizations | Location | People |
---|
article
Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions.
Abstract
Electronically excited states play important roles in many chemical reactions and spectroscopic techniques. In quantum chemistry, a common technique to solve excited states is the multiroot Davidson algorithm, but it is not designed for processes like X-ray spectroscopy that involves hundreds of highly excited states. We show how the use of a restricted active space wavefunction together with a projection operator to remove low-lying electronic states offers an efficient way to reach single and double-core-hole states. Additionally, several improvements to the stability and efficiency of the configuration interaction (CI) algorithm for a large number of states are suggested. When applied to a series of transition metal complexes the new CI algorithm does not only resolve divergence issues but also leads to typical reduction in computational time by 70%, with the largest savings for small molecules and large active spaces. Together, the projection operator and the improved CI algorithm now make it possible to simulate a wide range of single- and two-photon spectroscopies. © 2019 Wiley Periodicals, Inc.