People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kalita, Damian
National Centre for Nuclear Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faultscitations
- 2024Albumin suppresses oxidation of Ti-Nb alloy in the simulated inflammatory environment
- 2022Microstructure, Mechanical Properties, and Martensitic Transformation in NiTi Shape Memory Alloy Fabricated Using Electron Beam Additive Manufacturing Techniquecitations
- 2020Superplastic deformation of Mg–9Li–2Al–0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forgingcitations
- 2020Superelastic Behavior of Ti-Nb Alloys Obtained by the Laser Engineered Net Shaping (LENS) Techniquecitations
- 2020Microstructure and Properties of Inconel 625 Fabricated Using Two Types of Laser Metal Deposition Methodscitations
- 2020The Effect of Transition Metals on Quasicrystalline Phase Formation in Mechanically Alloyed Al65Cu20Fe15 Powdercitations
Places of action
Organizations | Location | People |
---|
article
Albumin suppresses oxidation of Ti-Nb alloy in the simulated inflammatory environment
Abstract
<jats:title>Abstract</jats:title><jats:p>Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post‐operative inflammation, could induce corrosion of standard Ti‐based biomaterials. For Ti<jats:styled-content style="fixed-case"></jats:styled-content>6Al<jats:styled-content style="fixed-case"></jats:styled-content>4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti β‐phase materials, such as TiNb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of TiNb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post‐immersion XPS and cross‐section TEM analysis have demonstrated that prolonged exposure to an albumin‐rich inflammatory solution results in the complete coverage of the TiNb surface by a protein layer. Moreover, TEM studies revealed that H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>‐induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti<jats:styled-content style="fixed-case"></jats:styled-content>6Al<jats:styled-content style="fixed-case"></jats:styled-content>4V, the addition of albumin to the PBS + H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a TiNb implant.</jats:p>