Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amling, Michael

  • Google
  • 6
  • 38
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Long‐Term Immobilization in Elderly Females Causes a Specific Pattern of Cortical Bone and Osteocyte Deterioration Different From Postmenopausal Osteoporosis61citations
  • 2017Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue6citations
  • 2016Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials7citations
  • 2015Addition of a Fluoride-containing Radiopacifier Improves Micromechanical and Biological Characteristics of Modified Calcium Silicate Cements21citations
  • 2012Analysis of retrieved hip resurfacing arthroplasties reveals the interrelationship between interface hyperosteoidosis and demineralization of viable bone trabeculae.citations
  • 2011Fracture prevention by femoroplasty--cement augmentation of the proximal femur.citations

Places of action

Chart of shared publication
Kroge, Simon Von
1 / 1 shared
Wulff, Birgit
1 / 1 shared
Wölfel, Eva Maria
1 / 1 shared
Püschel, Klaus
2 / 4 shared
Krause, Matthias
1 / 16 shared
Busse, Björn
5 / 8 shared
Ritchie, Robert O.
1 / 13 shared
Rolvien, Tim
1 / 1 shared
Milovanovic, Petar
3 / 3 shared
Schmidt, Felix N.
1 / 2 shared
Hahn, Michael
4 / 4 shared
Zustin, Jozef
2 / 2 shared
Katzer, Alexander
1 / 1 shared
Procop, Mathias
1 / 2 shared
Riedel, Christoph
1 / 2 shared
Djurić, Marija
1 / 2 shared
Antonijevic, Djordje
2 / 2 shared
Djuric, Marija
1 / 1 shared
Jeschke, Anke
1 / 1 shared
Colovic, Bozana
1 / 2 shared
Jevremovic, Danimir
1 / 4 shared
Kisic, Danilo
1 / 1 shared
Scheidt, Annika
1 / 1 shared
Jokanovic, Vukoman
1 / 6 shared
Rüther, Wolfgang
1 / 1 shared
Morlock, Michael M.
1 / 1 shared
Krause, Matthias
1 / 1 shared
Breer, Stefan
1 / 1 shared
Beckmann, J.
1 / 1 shared
Springorum, R.
1 / 1 shared
Gehrke, T.
1 / 4 shared
Stark, Olaf Alexander
1 / 1 shared
Grifka, J.
1 / 1 shared
Vettorazzi, Eik
1 / 2 shared
Bachmeier, S.
1 / 1 shared
Lüring, C.
1 / 1 shared
Tingart, M.
1 / 1 shared
Gebauer, Matthias
1 / 1 shared
Chart of publication period
2020
2017
2016
2015
2012
2011

Co-Authors (by relevance)

  • Kroge, Simon Von
  • Wulff, Birgit
  • Wölfel, Eva Maria
  • Püschel, Klaus
  • Krause, Matthias
  • Busse, Björn
  • Ritchie, Robert O.
  • Rolvien, Tim
  • Milovanovic, Petar
  • Schmidt, Felix N.
  • Hahn, Michael
  • Zustin, Jozef
  • Katzer, Alexander
  • Procop, Mathias
  • Riedel, Christoph
  • Djurić, Marija
  • Antonijevic, Djordje
  • Djuric, Marija
  • Jeschke, Anke
  • Colovic, Bozana
  • Jevremovic, Danimir
  • Kisic, Danilo
  • Scheidt, Annika
  • Jokanovic, Vukoman
  • Rüther, Wolfgang
  • Morlock, Michael M.
  • Krause, Matthias
  • Breer, Stefan
  • Beckmann, J.
  • Springorum, R.
  • Gehrke, T.
  • Stark, Olaf Alexander
  • Grifka, J.
  • Vettorazzi, Eik
  • Bachmeier, S.
  • Lüring, C.
  • Tingart, M.
  • Gebauer, Matthias
OrganizationsLocationPeople

article

Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue

  • Hahn, Michael
  • Amling, Michael
  • Zustin, Jozef
  • Katzer, Alexander
  • Procop, Mathias
  • Busse, Björn
Abstract

<p>Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • corrosion
  • chromium
  • cobalt
  • hot isostatic pressing
  • microscopy
  • chromium alloy