Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Shiping

  • Google
  • 2
  • 3
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Synergistic effects of Mo2C-NC@FexCoy core-shell nanoparticles in electrocatalytic overall water splitting reaction16citations
  • 2019Synergistic Effects of Mo<sub>2</sub>C‐NC@Co<sub><i>x</i></sub>Fe<sub><i>y</i></sub> Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction16citations

Places of action

Chart of shared publication
Schulz, Stephan
2 / 29 shared
Saddeler, Sascha
2 / 4 shared
Bendt, Georg
2 / 7 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Schulz, Stephan
  • Saddeler, Sascha
  • Bendt, Georg
OrganizationsLocationPeople

article

Synergistic Effects of Mo<sub>2</sub>C‐NC@Co<sub><i>x</i></sub>Fe<sub><i>y</i></sub> Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction

  • Schulz, Stephan
  • Wang, Shiping
  • Saddeler, Sascha
  • Bendt, Georg
Abstract

<jats:sec><jats:label /><jats:p>Transition metals (TMs) are highly investigated as nonprecious electrocatalysts for hydrogen evolution (HER) and oxygen evolution (OER) reactions. There is a strong demand for highly efficient and inexpensive catalysts for overall water splitting. Herein, the bimetallic Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub><jats:italic>y</jats:italic></jats:sub> alloy nanoparticles encapsulated in a N‐doped graphene shell containing molybdenum carbide (Mo<jats:sub>2</jats:sub>C) nanoparticles are synthesized by the pyrolysis of cobalt ferrite (Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub>) nanoparticles coated by melamine‐formaldehyde resin cross‐linked with molybdic acid. Molybdic acid not only serves as precursor for the formation of highly dispersed Mo<jats:sub>2</jats:sub>C nanoparticles in the N‐doped graphene shell but also enhances the thermal stability of the organic shell, resulting in the formation of smaller Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub><jats:italic>y</jats:italic></jats:sub> cores. The formation of Mo<jats:sub>2</jats:sub>C nanoparticles in the graphene shell is promoted by the Co<jats:sub><jats:italic>x</jats:italic></jats:sub>Fe<jats:sub>3−<jats:italic>x</jats:italic></jats:sub>O<jats:sub>4</jats:sub> core. Interestingly, the synergistic presence of Mo<jats:sub>2</jats:sub>C nanoparticles not only enhances the HER activity of the material but also renders a partial breakage of the graphene shell, which increases the surface concentration of OER‐active Co and therefore enhances the OER activity. The as‐prepared TM‐based materials serve as bifunctional catalysts for the overall water splitting and exhibit improved electrocatalytic performances compared to standard cells based on precious metals, with the potentials of 1.53 and 1.60 V at 10 and 20 mA cm<jats:sup>−2</jats:sup> in alkaline media, respectively.</jats:p></jats:sec>

Topics
  • nanoparticle
  • pyrolysis
  • impedance spectroscopy
  • surface
  • molybdenum
  • Oxygen
  • carbide
  • Hydrogen
  • cobalt
  • resin
  • size-exclusion chromatography