Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Falmbigl, Matthias

  • Google
  • 2
  • 13
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015The Synthesis, Structure, and Electrical Characterization of (SnSe)<sub>1.2</sub>TiSe<sub>2</sub>33citations
  • 2012Spinodal decomposition in (CaxBa1-x)(y)Fe4Sb128citations

Places of action

Chart of shared publication
Johnson, David C.
1 / 5 shared
Ditto, Jeffrey
1 / 2 shared
Winkler, Markus
1 / 8 shared
Moore, Daniel B.
1 / 1 shared
Merrill, Devin R.
1 / 1 shared
Pernau, Hansfridtjof
1 / 1 shared
Rogl, Gerda
1 / 4 shared
Grytsiv, Andrij
1 / 1 shared
Rentenberger, Christian
1 / 46 shared
Zehetbauer, Michael
1 / 8 shared
Rogl, Peter Franz
1 / 2 shared
Mangler, Clemens
1 / 15 shared
Bauer, Ernst
1 / 9 shared
Chart of publication period
2015
2012

Co-Authors (by relevance)

  • Johnson, David C.
  • Ditto, Jeffrey
  • Winkler, Markus
  • Moore, Daniel B.
  • Merrill, Devin R.
  • Pernau, Hansfridtjof
  • Rogl, Gerda
  • Grytsiv, Andrij
  • Rentenberger, Christian
  • Zehetbauer, Michael
  • Rogl, Peter Franz
  • Mangler, Clemens
  • Bauer, Ernst
OrganizationsLocationPeople

article

The Synthesis, Structure, and Electrical Characterization of (SnSe)<sub>1.2</sub>TiSe<sub>2</sub>

  • Johnson, David C.
  • Ditto, Jeffrey
  • Winkler, Markus
  • Moore, Daniel B.
  • Merrill, Devin R.
  • Pernau, Hansfridtjof
  • Falmbigl, Matthias
Abstract

<jats:title>Abstract</jats:title><jats:p>(SnSe)<jats:sub>1.2</jats:sub>TiSe<jats:sub>2</jats:sub> was found to self‐assemble from a precursor containing modulated layers of Sn–Se and Ti–Se over a surprisingly large range of layer thicknesses and compositions. The constituent lattices form an alternating layer superstructure with rotational disorder present between the layers. This compound was found to have the highest Seebeck coefficient measured for analogous TiX<jats:sub>2</jats:sub> containing misfit layered compounds to date, suggesting potential for low‐temperature thermoelectric applications. Electrical characterization suggests that electrons transferred from SnSe to TiSe<jats:sub>2</jats:sub> are responsible for the higher carrier concentration observed relative to bulk TiSe<jats:sub>2</jats:sub>. The transfer of charge from one constituent to the other may provide a mechanism for doping layered dichalcogenides for various applications without negatively affecting carrier mobility.</jats:p>

Topics
  • compound
  • mobility
  • layered